scholarly journals Commutative von Neumann regular rings are 1-Gröbner

Author(s):  
Zoran Petrovic ◽  
Maja Roslavcev

Let R be a commutative von Neumann regular ring. We show that every finitely generated ideal I in the ring of polynomials R[X] has a strong Gr?bner basis. We prove this result using only the defining property of a von Neumann regular ring.

1985 ◽  
Vol 37 (6) ◽  
pp. 1134-1148
Author(s):  
David Handelman

In this paper, we are primarily concerned with the behaviour of the centre with respect to the completion process for von Neumann regular rings at the pseudo-metric topology induced by a pseudo-rank function.Let R be a (von Neumann) regular ring, and N a pseudo-rank function (all terms left undefined here may be found in [6]). Then N induces a pseudo-metric topology on R, and the completion of R at this pseudo-metric, , is a right and left self-injective regular ring. Let Z( ) denote the centre of whatever ring is in the brackets. We are interested in the map .If R is simple, Z(R) is a field, so is discrete in the topology; yet Goodearl has constructed an example with Z(R) = R and Z(R) = C [5, 2.10]. There is thus no hope of a general density result.


1974 ◽  
Vol 17 (2) ◽  
pp. 283-284 ◽  
Author(s):  
Kwangil Koh

Recently, in the Research Problems of Canadian Mathematical Bulletin, Vol. 14, No. 4, 1971, there appeared a problem which asks “Is a prime Von Neumann regular ring pimitive?” While we are not able to settle this question one way or the other, we prove that in a Von Neumann regular ring, there is a maximal annihilator right ideal if and only if there is a minimal right ideal.


Author(s):  
Najib Mahdou

We show that eachR-module isn-flat (resp., weaklyn-flat) if and only ifRis an(n,n−1)-ring (resp., a weakly(n,n−1)-ring). We also give a new characterization ofn-Von Neumann regular rings and a characterization of weakn-Von Neumann regular rings for (CH)-rings and for local rings. Finally, we show that in a class of principal rings and a class of local Gaussian rings, a weakn-Von Neumann regular ring is a (CH)-ring.


1971 ◽  
Vol 4 (1) ◽  
pp. 57-62 ◽  
Author(s):  
K. M. Rangaswamy ◽  
N. Vanaja

It is shown that a von Neumann regular ring R is left seif-injective if and only if every finitely generated torsion-free left R-module is projective. It is further shown that a countable self-injective strongly regular ring is Artin semi-simple.


1969 ◽  
Vol 12 (4) ◽  
pp. 417-426 ◽  
Author(s):  
R.C. Courter

We prove in this paper that fifteen classes of rings coincide with the class of rings named in the title. One of them is the class of rings R such that X2 = X for each R-ideal X: we shall refer to rings with this property (and thus to the rings of the title) as fully idempotent rings. The simple rings and the (von Neumann) regular rings are fully idempotent. Indeed, every finitely generated right or left ideal of a regular ring is generated by an idempotent [l, p. 42], so that X2 = X holds for every one-sided ideal X.


Filomat ◽  
2012 ◽  
Vol 26 (2) ◽  
pp. 253-259
Author(s):  
Malakooti Rad ◽  
S.H. Ghalandarzadeh ◽  
S. Shirinkam

Let R be a commutative ring with identity and M be a unitary R-module. A torsion graph of M, denoted by ?(M), is a graph whose vertices are the non-zero torsion elements of M, and two distinct vertices x and y are adjacent if and only if [x : M][y : M]M = 0. In this paper, we investigate the relationship between the diameters of ?(M) and ?(R), and give some properties of minimal prime submodules of a multiplication R-module M over a von Neumann regular ring. In particular, we show that for a multiplication R-module M over a B?zout ring R the diameter of ?(M) and ?(R) is equal, where M , T(M). Also, we prove that, for a faithful multiplication R-module M with |M|?4,?(M) is a complete graph if and only if ?(R) is a complete graph.


Author(s):  
Pere Ara ◽  
Joan Bosa ◽  
Enrique Pardo ◽  
Aidan Sims

Abstract Given an adaptable separated graph, we construct an associated groupoid and explore its type semigroup. Specifically, we first attach to each adaptable separated graph a corresponding semigroup, which we prove is an $E^*$-unitary inverse semigroup. As a consequence, the tight groupoid of this semigroup is a Hausdorff étale groupoid. We show that this groupoid is always amenable and that the type semigroups of groupoids obtained from adaptable separated graphs in this way include all finitely generated conical refinement monoids. The first three named authors will utilize this construction in forthcoming work to solve the realization problem for von Neumann regular rings, in the finitely generated case.


2013 ◽  
Vol 20 (02) ◽  
pp. 343-347 ◽  
Author(s):  
Liang Shen

Let R be a J-regular ring, i.e., R/J(R) is a von Neumann regular ring, where J(R) is the Jacobson radical of R. It is proved: (i) For every n ≥ 1, R is right n-injective if and only if every homomorphism from an n-generated small right ideal of R to RR can be extended to one from RR to RR. (ii) R is right FP-injective if and only if R is right (J,R)-FP-injective. Some known results are improved.


Author(s):  
Rachid Ech-chaouy ◽  
Abdelouahab Idelhadj ◽  
Rachid Tribak

AbstractA module M is called $$\mathfrak {s}$$ s -coseparable if for every nonzero submodule U of M such that M/U is finitely generated, there exists a nonzero direct summand V of M such that $$V \subseteq U$$ V ⊆ U and M/V is finitely generated. It is shown that every non-finitely generated free module is $$\mathfrak {s}$$ s -coseparable but a finitely generated free module is not, in general, $$\mathfrak {s}$$ s -coseparable. We prove that the class of $$\mathfrak {s}$$ s -coseparable modules over a right noetherian ring is closed under finite direct sums. We show that the class of commutative rings R for which every cyclic R-module is $$\mathfrak {s}$$ s -coseparable is exactly that of von Neumann regular rings. Some examples of modules M for which every direct summand of M is $$\mathfrak {s}$$ s -coseparable are provided.


1974 ◽  
Vol 19 (1) ◽  
pp. 89-91 ◽  
Author(s):  
R. Yue Chi Ming

Throughout, A denotes an associative ring with identity and “module” means “left, unitary A-module”. In (3), it is proved that A is semi-simple, Artinian if A is a semi-prime ring such that every left ideal is a left annihilator. A natural question is whether a similar result holds for a (von Neumann) regular ring. The first proposition of this short note is that if A contains no non-zero nilpotent element, then A is regular iff every principal left ideal is the left annihilator of an element of A. It is well-known that a commutative ring is regular iff every simple module is injective (I. Kaplansky, see (2, p. 130)). The second proposition here is a partial generalisation of that result.


Sign in / Sign up

Export Citation Format

Share Document