A note on modules over regular rings

1971 ◽  
Vol 4 (1) ◽  
pp. 57-62 ◽  
Author(s):  
K. M. Rangaswamy ◽  
N. Vanaja

It is shown that a von Neumann regular ring R is left seif-injective if and only if every finitely generated torsion-free left R-module is projective. It is further shown that a countable self-injective strongly regular ring is Artin semi-simple.

Author(s):  
Zoran Petrovic ◽  
Maja Roslavcev

Let R be a commutative von Neumann regular ring. We show that every finitely generated ideal I in the ring of polynomials R[X] has a strong Gr?bner basis. We prove this result using only the defining property of a von Neumann regular ring.


1985 ◽  
Vol 37 (6) ◽  
pp. 1134-1148
Author(s):  
David Handelman

In this paper, we are primarily concerned with the behaviour of the centre with respect to the completion process for von Neumann regular rings at the pseudo-metric topology induced by a pseudo-rank function.Let R be a (von Neumann) regular ring, and N a pseudo-rank function (all terms left undefined here may be found in [6]). Then N induces a pseudo-metric topology on R, and the completion of R at this pseudo-metric, , is a right and left self-injective regular ring. Let Z( ) denote the centre of whatever ring is in the brackets. We are interested in the map .If R is simple, Z(R) is a field, so is discrete in the topology; yet Goodearl has constructed an example with Z(R) = R and Z(R) = C [5, 2.10]. There is thus no hope of a general density result.


1974 ◽  
Vol 17 (2) ◽  
pp. 283-284 ◽  
Author(s):  
Kwangil Koh

Recently, in the Research Problems of Canadian Mathematical Bulletin, Vol. 14, No. 4, 1971, there appeared a problem which asks “Is a prime Von Neumann regular ring pimitive?” While we are not able to settle this question one way or the other, we prove that in a Von Neumann regular ring, there is a maximal annihilator right ideal if and only if there is a minimal right ideal.


Author(s):  
Najib Mahdou

We show that eachR-module isn-flat (resp., weaklyn-flat) if and only ifRis an(n,n−1)-ring (resp., a weakly(n,n−1)-ring). We also give a new characterization ofn-Von Neumann regular rings and a characterization of weakn-Von Neumann regular rings for (CH)-rings and for local rings. Finally, we show that in a class of principal rings and a class of local Gaussian rings, a weakn-Von Neumann regular ring is a (CH)-ring.


2013 ◽  
Vol 20 (02) ◽  
pp. 343-347 ◽  
Author(s):  
Liang Shen

Let R be a J-regular ring, i.e., R/J(R) is a von Neumann regular ring, where J(R) is the Jacobson radical of R. It is proved: (i) For every n ≥ 1, R is right n-injective if and only if every homomorphism from an n-generated small right ideal of R to RR can be extended to one from RR to RR. (ii) R is right FP-injective if and only if R is right (J,R)-FP-injective. Some known results are improved.


1969 ◽  
Vol 12 (4) ◽  
pp. 417-426 ◽  
Author(s):  
R.C. Courter

We prove in this paper that fifteen classes of rings coincide with the class of rings named in the title. One of them is the class of rings R such that X2 = X for each R-ideal X: we shall refer to rings with this property (and thus to the rings of the title) as fully idempotent rings. The simple rings and the (von Neumann) regular rings are fully idempotent. Indeed, every finitely generated right or left ideal of a regular ring is generated by an idempotent [l, p. 42], so that X2 = X holds for every one-sided ideal X.


2014 ◽  
Vol 51 (2) ◽  
pp. 271-284 ◽  
Author(s):  
Yinchun Qu ◽  
Junchao Wei

A ring R is called NLI (rings whose nilpotent elements form a Lie ideal) if for each a ∈ N(R) and b ∈ R, ab − ba ∈ N(R). Clearly, NI rings are NLI. In this note, many properties of NLI rings are studied. The main results we obtain are the following: (1) NLI rings are directly finite and left min-abel; (2) If R is a NLI ring, then (a) R is a strongly regular ring if and only if R is a Von Neumann regular ring; (b) R is (weakly) exchange if and only if R is (weakly) clean; (c) R is a reduced ring if and only if R is a n-regular ring; (3) If R is a NLI left MC2 ring whose singular simple left modules are Wnil-injective, then R is reduced.


2011 ◽  
Vol 10 (06) ◽  
pp. 1351-1362 ◽  
Author(s):  
DAVID E. DOBBS ◽  
JAY SHAPIRO

Let R ⊆ T be a (unital) extension of (commutative) rings, such that the total quotient ring of R is a von Neumann regular ring and T is torsion-free as an R-module. Let T ⊆ B be a ring extension such that B is a reduced ring that is torsion-free as a T-module. Let R* (respectively, A) be the integral closure of R in T (respectively, in B). Then (R*, T) is a normal pair (i.e. S is integrally closed in T for each ring S such that R* ⊆ S ⊆ T) if and only if (A, AT) is a normal pair. This generalizes results of Prüfer and Heinzer on Prüfer domains to normal pairs of complemented rings.


Filomat ◽  
2012 ◽  
Vol 26 (2) ◽  
pp. 253-259
Author(s):  
Malakooti Rad ◽  
S.H. Ghalandarzadeh ◽  
S. Shirinkam

Let R be a commutative ring with identity and M be a unitary R-module. A torsion graph of M, denoted by ?(M), is a graph whose vertices are the non-zero torsion elements of M, and two distinct vertices x and y are adjacent if and only if [x : M][y : M]M = 0. In this paper, we investigate the relationship between the diameters of ?(M) and ?(R), and give some properties of minimal prime submodules of a multiplication R-module M over a von Neumann regular ring. In particular, we show that for a multiplication R-module M over a B?zout ring R the diameter of ?(M) and ?(R) is equal, where M , T(M). Also, we prove that, for a faithful multiplication R-module M with |M|?4,?(M) is a complete graph if and only if ?(R) is a complete graph.


2020 ◽  
Vol 12 (2) ◽  
pp. 499-503
Author(s):  
B.N. Türkmen ◽  
E. Türkmen

As a proper generalization of injective modules in term of supplements, we say that a module $M$ has the property (ME) if, whenever $M\subseteq N$, $M$ has a supplement $K$ in $N$, where $K$ has a mutual supplement in $N$. In this study, we obtain that $(1)$ a semisimple $R$-module $M$ has the property (E) if and only if $M$ has the property (ME); $(2)$ a semisimple left $R$-module $M$ over a commutative Noetherian ring $R$ has the property (ME) if and only if $M$ is algebraically compact if and only if almost all isotopic components of $M$ are zero; $(3)$ a module $M$ over a von Neumann regular ring has the property (ME) if and only if it is injective; $(4)$ a principal ideal domain $R$ is left perfect if every free left $R$-module has the property (ME)


Sign in / Sign up

Export Citation Format

Share Document