scholarly journals Signed total k-independence in digraphs

Filomat ◽  
2014 ◽  
Vol 28 (10) ◽  
pp. 2121-2130
Author(s):  
Lutz Volkmann

Let k ? 2 be an integer. A function f:V(D) ? {-1,1} defined on the vertex set V(D) of a digraph D is a signed total k-independence function if ?x?N-(v)f(x) ? k - 1 for each v ? V(D), where N-(v) consists of all vertices of D from which arcs go into v. The weight of a signed total k-independence function f is defined by w(f)=?x?V(D)f(x). The maximum of weights w(f), taken over all signed total k-independence functions f on D, is the signed total k-independence number k?st(D) of D. In this work, we mainly present upper bounds on k?st(D), as for example k?st(D) ? n-2? ?- + 1-k)/2? and k?st(D)? ?+2k-?+-2/?+?+ ? n , where n is the order, ?- the maximum indegree and ?+ and ?+ are the maximum and minimum outdegree of the digraph D. Some of our results imply well-known properties on the signed total 2-independence number of graphs.


2014 ◽  
Vol 12 (3) ◽  
Author(s):  
Lutz Volkmann

AbstractLet k ≥ 2 be an integer. A function f: V(G) → {−1, 1} defined on the vertex set V(G) of a graph G is a signed k-independence function if the sum of its function values over any closed neighborhood is at most k − 1. That is, Σx∈N[v] f(x) ≤ k − 1 for every v ∈ V(G), where N[v] consists of v and every vertex adjacent to v. The weight of a signed k-independence function f is w(f) = Σv∈V(G) f(v). The maximum weight w(f), taken over all signed k-independence functions f on G, is the signed k-independence number α sk(G) of G.In this work, we mainly present upper bounds on α sk (G), as for example α sk(G) ≤ n − 2⌈(Δ(G) + 2 − k)/2⌉, and we prove the Nordhaus-Gaddum type inequality $$\alpha _S^k \left( G \right) + \alpha _S^k \left( {\bar G} \right) \leqslant n + 2k - 3$$, where n is the order, Δ(G) the maximum degree and $$\bar G$$ the complement of the graph G. Some of our results imply well-known bounds on the signed 2-independence number.



Author(s):  
G. Suresh Singh ◽  
P. K. Prasobha

Let $K$ be any finite field. For any prime $p$, the $p$-adic valuation map is given by $\psi_{p}:K/\{0\} \to \R^+\bigcup\{0\}$ is given by $\psi_{p}(r) = n$ where $r = p^n \frac{a}{b}$, where $p,a,b$ are relatively prime. The field $K$ together with a valuation is called valued field. Also, any field $K$ has the trivial valuation determined by $\psi{(K)} = \{0,1\}$. Through out the paper K represents $\Z_q$. In this paper, we construct the graph corresponding to the valuation map called the valued field graph, denoted by $VFG_{p}(\Z_{q})$ whose vertex set is $\{v_0,v_1,v_2,\ldots, v_{q-1}\}$ where two vertices $v_i$ and $v_j$ are adjacent if $\psi_{p}(i) = j$ or $\psi_{p}(j) = i$. Here, we tried to characterize the valued field graph in $\Z_q$. Also we analyse various graph theoretical parameters such as diameter, independence number etc.



2013 ◽  
Vol 12 (04) ◽  
pp. 1250199 ◽  
Author(s):  
T. ASIR ◽  
T. TAMIZH CHELVAM

The intersection graph ITΓ(R) of gamma sets in the total graph TΓ(R) of a commutative ring R, is the undirected graph with vertex set as the collection of all γ-sets in the total graph of R and two distinct vertices u and v are adjacent if and only if u ∩ v ≠ ∅. Tamizh Chelvam and Asir [The intersection graph of gamma sets in the total graph I, to appear in J. Algebra Appl.] studied about ITΓ(R) where R is a commutative Artin ring. In this paper, we continue our interest on ITΓ(R) and actually we study about Eulerian, Hamiltonian and pancyclic nature of ITΓ(R). Further, we focus on certain graph theoretic parameters of ITΓ(R) like the independence number, the clique number and the connectivity of ITΓ(R). Also, we obtain both vertex and edge chromatic numbers of ITΓ(R). In fact, it is proved that if R is a finite commutative ring, then χ(ITΓ(R)) = ω(ITΓ(R)). Having proved that ITΓ(R) is weakly perfect for all finite commutative rings, we further characterize all finite commutative rings for which ITΓ(R) is perfect. In this sequel, we characterize all commutative Artin rings for which ITΓ(R) is of class one (i.e. χ′(ITΓ(R)) = Δ(ITΓ(R))). Finally, it is proved that the vertex connectivity and edge connectivity of ITΓ(R) are equal to the degree of any vertex in ITΓ(R).



2017 ◽  
Vol 60 (2) ◽  
pp. 319-328
Author(s):  
Soheila Khojasteh ◽  
Mohammad Javad Nikmehr

AbstractLet R be a commutative ring with non-zero identity. In this paper, we introduce theweakly nilpotent graph of a commutative ring. The weakly nilpotent graph of R denoted by Γw(R) is a graph with the vertex set R* and two vertices x and y are adjacent if and only if x y ∊ N(R)*, where R* = R \ {0} and N(R)* is the set of all non-zero nilpotent elements of R. In this article, we determine the diameter of weakly nilpotent graph of an Artinian ring. We prove that if Γw(R) is a forest, then Γw(R) is a union of a star and some isolated vertices. We study the clique number, the chromatic number, and the independence number of Γw(R). Among other results, we show that for an Artinian ring R, Γw(R) is not a disjoint union of cycles or a unicyclic graph. For Artinan rings, we determine diam . Finally, we characterize all commutative rings R for which is a cycle, where is the complement of the weakly nilpotent graph of R.



2012 ◽  
Vol 12 (03) ◽  
pp. 1250179 ◽  
Author(s):  
A. AZIMI ◽  
A. ERFANIAN ◽  
M. FARROKHI D. G.

Let R be a commutative ring with nonzero identity. Then the Jacobson graph of R, denoted by 𝔍R, is defined as a graph with vertex set R\J(R) such that two distinct vertices x and y are adjacent if and only if 1 - xy is not a unit of R. We obtain some graph theoretical properties of 𝔍R including its connectivity, planarity and perfectness and we compute some of its numerical invariants, namely diameter, girth, dominating number, independence number and vertex chromatic number and give an estimate for its edge chromatic number.





2016 ◽  
Vol 24 (1) ◽  
pp. 153-176 ◽  
Author(s):  
Kinkar Ch. Das ◽  
Nihat Akgunes ◽  
Muge Togan ◽  
Aysun Yurttas ◽  
I. Naci Cangul ◽  
...  

AbstractFor a (molecular) graph G with vertex set V (G) and edge set E(G), the first Zagreb index of G is defined as, where dG(vi) is the degree of vertex vi in G. Recently Xu et al. introduced two graphical invariantsandnamed as first multiplicative Zagreb coindex and second multiplicative Zagreb coindex, respectively. The Narumi-Katayama index of a graph G, denoted by NK(G), is equal to the product of the degrees of the vertices of G, that is, NK(G) =. The irregularity index t(G) of G is defined as the number of distinct terms in the degree sequence of G. In this paper, we give some lower and upper bounds on the first Zagreb index M1(G) of graphs and trees in terms of number of vertices, irregularity index, maxi- mum degree, and characterize the extremal graphs. Moreover, we obtain some lower and upper bounds on the (first and second) multiplicative Zagreb coindices of graphs and characterize the extremal graphs. Finally, we present some relations between first Zagreb index and Narumi-Katayama index, and (first and second) multiplicative Zagreb index and coindices of graphs.



Mathematics ◽  
2018 ◽  
Vol 7 (1) ◽  
pp. 2 ◽  
Author(s):  
Ke Zhang ◽  
Haixing Zhao ◽  
Zhonglin Ye ◽  
Yu Zhu ◽  
Liang Wei

A hypergraph H = ( V , ε ) is a pair consisting of a vertex set V , and a set ε of subsets (the hyperedges of H ) of V . A hypergraph H is r -uniform if all the hyperedges of H have the same cardinality r . Let H be an r -uniform hypergraph, we generalize the concept of trees for r -uniform hypergraphs. We say that an r -uniform hypergraph H is a generalized hypertree ( G H T ) if H is disconnected after removing any hyperedge E , and the number of components of G H T − E is a fixed value k   ( 2 ≤ k ≤ r ) . We focus on the case that G H T − E has exactly two components. An edge-minimal G H T is a G H T whose edge set is minimal with respect to inclusion. After considering these definitions, we show that an r -uniform G H T on n vertices has at least 2 n / ( r + 1 ) edges and it has at most n − r + 1 edges if r ≥ 3   and   n ≥ 3 , and the lower and upper bounds on the edge number are sharp. We then discuss the case that G H T − E has exactly k   ( 2 ≤ k ≤ r − 1 ) components.



2020 ◽  
Vol 2020 ◽  
pp. 1-7
Author(s):  
Yajing Wang ◽  
Yubin Gao

Spectral graph theory plays an important role in engineering. Let G be a simple graph of order n with vertex set V=v1,v2,…,vn. For vi∈V, the degree of the vertex vi, denoted by di, is the number of the vertices adjacent to vi. The arithmetic-geometric adjacency matrix AagG of G is defined as the n×n matrix whose i,j entry is equal to di+dj/2didj if the vertices vi and vj are adjacent and 0 otherwise. The arithmetic-geometric spectral radius and arithmetic-geometric energy of G are the spectral radius and energy of its arithmetic-geometric adjacency matrix, respectively. In this paper, some new upper bounds on arithmetic-geometric energy are obtained. In addition, we present the Nordhaus–Gaddum-type relations for arithmetic-geometric spectral radius and arithmetic-geometric energy and characterize corresponding extremal graphs.



2014 ◽  
Vol 2014 ◽  
pp. 1-7 ◽  
Author(s):  
Yujun Yang

The resistance distance between two vertices of a connected graphGis defined as the effective resistance between them in the corresponding electrical network constructed fromGby replacing each edge ofGwith a unit resistor. The Kirchhoff index ofGis the sum of resistance distances between all pairs of vertices. In this paper, general bounds for the Kirchhoff index are given via the independence number and the clique number, respectively. Moreover, lower and upper bounds for the Kirchhoff index of planar graphs and fullerene graphs are investigated.



Sign in / Sign up

Export Citation Format

Share Document