scholarly journals The Bounds of the Edge Number in Generalized Hypertrees

Mathematics ◽  
2018 ◽  
Vol 7 (1) ◽  
pp. 2 ◽  
Author(s):  
Ke Zhang ◽  
Haixing Zhao ◽  
Zhonglin Ye ◽  
Yu Zhu ◽  
Liang Wei

A hypergraph H = ( V , ε ) is a pair consisting of a vertex set V , and a set ε of subsets (the hyperedges of H ) of V . A hypergraph H is r -uniform if all the hyperedges of H have the same cardinality r . Let H be an r -uniform hypergraph, we generalize the concept of trees for r -uniform hypergraphs. We say that an r -uniform hypergraph H is a generalized hypertree ( G H T ) if H is disconnected after removing any hyperedge E , and the number of components of G H T − E is a fixed value k   ( 2 ≤ k ≤ r ) . We focus on the case that G H T − E has exactly two components. An edge-minimal G H T is a G H T whose edge set is minimal with respect to inclusion. After considering these definitions, we show that an r -uniform G H T on n vertices has at least 2 n / ( r + 1 ) edges and it has at most n − r + 1 edges if r ≥ 3   and   n ≥ 3 , and the lower and upper bounds on the edge number are sharp. We then discuss the case that G H T − E has exactly k   ( 2 ≤ k ≤ r − 1 ) components.


2012 ◽  
Vol 21 (4) ◽  
pp. 611-622 ◽  
Author(s):  
A. KOSTOCHKA ◽  
M. KUMBHAT ◽  
T. ŁUCZAK

A colouring of the vertices of a hypergraph is called conflict-free if each edge e of contains a vertex whose colour does not repeat in e. The smallest number of colours required for such a colouring is called the conflict-free chromatic number of , and is denoted by χCF(). Pach and Tardos proved that for an (2r − 1)-uniform hypergraph with m edges, χCF() is at most of the order of rm1/r log m, for fixed r and large m. They also raised the question whether a similar upper bound holds for r-uniform hypergraphs. In this paper we show that this is not necessarily the case. Furthermore, we provide lower and upper bounds on the minimum number of edges of an r-uniform simple hypergraph that is not conflict-free k-colourable.



10.37236/2631 ◽  
2013 ◽  
Vol 20 (1) ◽  
Author(s):  
András Gyárfás ◽  
Gábor N. Sárközy

Here we address the problem to partition edge colored hypergraphs by monochromatic paths and cycles generalizing a well-known similar problem for graphs.We show that $r$-colored $r$-uniform complete hypergraphs can be partitioned into monochromatic Berge-paths of distinct colors. Also, apart from $2k-5$ vertices, $2$-colored $k$-uniform hypergraphs can be partitioned into two monochromatic loose paths.In general, we prove that in any $r$-coloring of a $k$-uniform hypergraph there is a partition of the vertex set intomonochromatic loose cycles such that their number depends only on $r$ and $k$.



2016 ◽  
Vol 24 (1) ◽  
pp. 153-176 ◽  
Author(s):  
Kinkar Ch. Das ◽  
Nihat Akgunes ◽  
Muge Togan ◽  
Aysun Yurttas ◽  
I. Naci Cangul ◽  
...  

AbstractFor a (molecular) graph G with vertex set V (G) and edge set E(G), the first Zagreb index of G is defined as, where dG(vi) is the degree of vertex vi in G. Recently Xu et al. introduced two graphical invariantsandnamed as first multiplicative Zagreb coindex and second multiplicative Zagreb coindex, respectively. The Narumi-Katayama index of a graph G, denoted by NK(G), is equal to the product of the degrees of the vertices of G, that is, NK(G) =. The irregularity index t(G) of G is defined as the number of distinct terms in the degree sequence of G. In this paper, we give some lower and upper bounds on the first Zagreb index M1(G) of graphs and trees in terms of number of vertices, irregularity index, maxi- mum degree, and characterize the extremal graphs. Moreover, we obtain some lower and upper bounds on the (first and second) multiplicative Zagreb coindices of graphs and characterize the extremal graphs. Finally, we present some relations between first Zagreb index and Narumi-Katayama index, and (first and second) multiplicative Zagreb index and coindices of graphs.



2017 ◽  
Vol 27 (4) ◽  
pp. 531-538 ◽  
Author(s):  
DWIGHT DUFFUS ◽  
BILL KAY ◽  
VOJTĚCH RÖDL

An oriented k-uniform hypergraph (a family of ordered k-sets) has the ordering property (or Property O) if, for every linear order of the vertex set, there is some edge oriented consistently with the linear order. We find bounds on the minimum number of edges in a hypergraph with Property O.



10.37236/9903 ◽  
2021 ◽  
Vol 28 (3) ◽  
Author(s):  
Luciano N. Grippo ◽  
Adrián Pastine ◽  
Pablo Torres ◽  
Mario Valencia-Pabon ◽  
Juan C. Vera

This paper considers an infection spreading in a graph; a vertex gets infected if at least two of its neighbors are infected. The $P_3$-hull number is the minimum size of a vertex set that eventually infects the whole graph. In the specific case of the Kneser graph $K(n,k)$, with $n\ge 2k+1$, an infection spreading on the family of $k$-sets of an $n$-set is considered. A set is infected whenever two sets disjoint from it are infected. We compute the exact value of the $P_3$-hull number of $K(n,k)$ for $n>2k+1$. For $n = 2k+1$, using graph homomorphisms from the Knesser graph to the Hypercube, we give lower and upper bounds.



Author(s):  
B. ShekinahHenry ◽  
Y. S. Irine Sheela

The [Formula: see text]-cube graph or hypercube [Formula: see text] is the graph whose vertex set is the set of all [Formula: see text]-dimensional Boolean vectors, two vertices being joined if and only if they differ in exactly one co-ordinate. The purpose of the paper is to investigate the signed domination number of this hypercube graphs. In this paper, signed domination number [Formula: see text]-cube graph for odd [Formula: see text] is found and the lower and upper bounds of hypercube for even [Formula: see text] are found.



2017 ◽  
Vol 09 (06) ◽  
pp. 1750078 ◽  
Author(s):  
Jose Torres-Jimenez ◽  
Jose Carlos Perez-Torres ◽  
Gildardo Maldonado-Martinez

A hypergraph [Formula: see text] with vertex set [Formula: see text] and edge set [Formula: see text] differs from a graph in that an edge can connect more than two vertices. An r-uniform hypergraph [Formula: see text] is a hypergraph with hyperedges of size [Formula: see text]. For an r-uniform hypergraph [Formula: see text], an r-uniform clique is a subset [Formula: see text] of [Formula: see text] such as every subset of [Formula: see text] elements of [Formula: see text] belongs to [Formula: see text]. We present hClique, an exact algorithm to find a maximum r-uniform clique for [Formula: see text]-uniform graphs. In order to evidence the performance of hClique, 32 random [Formula: see text]-graphs were solved.



10.37236/3901 ◽  
2014 ◽  
Vol 21 (4) ◽  
Author(s):  
J. Travis Johnston ◽  
Linyuan Lu

A non-uniform hypergraph $H=(V,E)$ consists of a vertex set $V$ and an edge set $E\subseteq 2^V$; the edges in $E$ are not required to all have the same cardinality. The set of all cardinalities of edges in $H$ is denoted by $R(H)$, the set of edge types. For a fixed hypergraph $H$, the Turán density $\pi(H)$ is defined to be $\lim_{n\to\infty}\max_{G_n}h_n(G_n)$, where the maximum is taken over all $H$-free hypergraphs $G_n$ on $n$ vertices satisfying $R(G_n)\subseteq R(H)$, and $h_n(G_n)$, the so called Lubell function, is the expected number of edges in $G_n$ hit by a random full chain. This concept, which generalizes  the Turán density of $k$-uniform hypergraphs, is motivated by recent work on extremal poset problems.  The details connecting these two areas will be revealed in the end of this paper.Several properties of Turán density, such as supersaturation, blow-up, and suspension, are generalized from uniform hypergraphs to non-uniform hypergraphs. Other questions such as "Which hypergraphs are degenerate?" are more complicated and don't appear to generalize well. In addition, we completely determine the Turán densities of $\{1,2\}$-hypergraphs.



10.37236/9604 ◽  
2020 ◽  
Vol 27 (4) ◽  
Author(s):  
Erica L.L. Liu ◽  
Jian Wang

Let $[n]$ denote the set $\{1, 2, \ldots, n\}$ and $\mathcal{F}^{(r)}_{n,k,a}$ be an $r$-uniform hypergraph on the vertex set $[n]$ with edge set consisting of all the $r$-element subsets of $[n]$ that contains at least $a$ vertices in $[ak+a-1]$. For $n\geq 2rk$, Frankl proved that $\mathcal{F}^{(r)}_{n,k,1}$ maximizes the number of edges in $r$-uniform hypergraphs on $n$ vertices with the matching number at most $k$. Huang, Loh and Sudakov considered a multicolored version of the Erd\H{o}s matching conjecture, and provided a sufficient condition on the number of edges for a multicolored hypergraph to contain a rainbow matching of size $k$. In this paper, we show that $\mathcal{F}^{(r)}_{n,k,a}$ maximizes the number of $s$-cliques in $r$-uniform hypergraphs on $n$ vertices with the matching number at most $k$ for sufficiently large $n$, where $a=\lfloor \frac{s-r}{k} \rfloor+1$. We also obtain a condition on the number of $s$-clques for a multicolored $r$-uniform hypergraph to contain a rainbow matching of size $k$, which reduces to the condition of Huang, Loh and Sudakov when $s=r$.



Symmetry ◽  
2018 ◽  
Vol 10 (8) ◽  
pp. 332 ◽  
Author(s):  
Muhammad Fazil ◽  
Muhammad Murtaza ◽  
Zafar Ullah ◽  
Usman Ali ◽  
Imran Javaid

Let G 1 and G 2 be disjoint copies of a graph G and g : V ( G 1 ) → V ( G 2 ) be a function. A functigraph F G consists of the vertex set V ( G 1 ) ∪ V ( G 2 ) and the edge set E ( G 1 ) ∪ E ( G 2 ) ∪ { u v : g ( u ) = v } . In this paper, we extend the study of distinguishing numbers of a graph to its functigraph. We discuss the behavior of distinguishing number in passing from G to F G and find its sharp lower and upper bounds. We also discuss the distinguishing number of functigraphs of complete graphs and join graphs.



Sign in / Sign up

Export Citation Format

Share Document