scholarly journals A certain class of q-close-to-convex functions of order α

Filomat ◽  
2018 ◽  
Vol 32 (6) ◽  
pp. 2295-2305
Author(s):  
Ben Wongsaijai ◽  
Nattakorn Sukantamala

For every 0 < q < 1 and 0 ? ? < 1, we introduce a class of analytic functions f on the open unit disc D with the standard normalization f(0)= 0 = f'(0)-1 and satisfying |1/1-?(z(Dqf)(z)/h(z)-?)- 1/1-q,(z?D), where h?S*q. This class is denoted by Kq(?), so called the class of q-close-to-convex-functions of order ?. In this paper, we study some geometric properties of this class. In addition, we consider the famous Bieberbach conjecture problem on coefficients for the class Kq(?). We also find some sufficient conditions for the function to be in Kq(?) for some particular choices of the functions h. Finally, we provide some applications on q-analogue of Gaussian hypergeometric function.

2011 ◽  
Vol 2011 ◽  
pp. 1-12
Author(s):  
Saibah Siregar ◽  
Maslina Darus

For , , we consider the of normalized analytic convex functions defined in the open unit disc . In this paper, we investigate the class , that is, , with is Koebe type, that is, . The subordination result for the aforementioned class will be given. Further, by making use of Jack's Lemma as well as several differential and other inequalities, the authors derived sufficient conditions for starlikeness of the class of -fold symmetric analytic functions of Koebe type. Relevant connections of the results presented here with those given in the earlier works are also indicated.


Mathematics ◽  
2019 ◽  
Vol 7 (4) ◽  
pp. 316
Author(s):  
Khurshid Ahmad ◽  
Saima Mustafa ◽  
Muhey Din ◽  
Shafiq ur Rehman ◽  
Mohsan Raza ◽  
...  

In this paper, the normalized hyper-Bessel functions are studied. Certain sufficient conditions are determined such that the hyper-Bessel functions are close-to-convex, starlike and convex in the open unit disc. We also study the Hardy spaces of hyper-Bessel functions.


Author(s):  
A. Y. Lashin ◽  
F. Z. El-Emam

In this paper, we investigate certain subclass of analytic functions on the open unit disc. This class generalizes the well-known class of [Formula: see text]-convex functions with respect to n-symmetric points. Some interesting properties such as subordination results, containment relations, integral preserving properties, and the integral representation for functions in this class are obtained.


2012 ◽  
Vol 2012 ◽  
pp. 1-17 ◽  
Author(s):  
Khalida Inayat Noor

We define and study some subclasses of analytic functions by using a certain multiplier transformation. These functions map the open unit disc onto the domains formed by parabolic and hyperbolic regions and extend the concept of uniformly close-to-convexity. Some interesting properties of these classes, which include inclusion results, coefficient problems, and invariance under certain integral operators, are discussed. The results are shown to be the best possible.


Author(s):  
Mamoru Nunokawa ◽  
Shigeyoshi Owa ◽  
Akira Ikeda

The object of the present paper is to derive some sufficient conditions for strongly starlikeness of multivalently convex functions of orderαin the open unit disc.


2019 ◽  
Vol 28 (1) ◽  
pp. 85-90
Author(s):  
YASAR POLATOGLU ◽  
◽  
ASENA CETINKAYA ◽  
OYA MERT ◽  
◽  
...  

In the present paper, we introduce a new subclass of normalized analytic starlike functions by using bounded radius rotation associated with q- analogues in the open unit disc \mathbb D. We investigate growth theorem, radius of starlikeness and coefficient estimate for the new subclass of starlike functions by using bounded radius rotation associated with q- analogues denoted by \mathcal{R}_k(q), where k\geq2, q\in(0,1).


1981 ◽  
Vol 24 (3) ◽  
pp. 347-350
Author(s):  
Lawrence A. Harris

AbstractA Hausdorff-Young theorem is given for Lp-valued analytic functions on the open unit disc and estimates on such functions and their derivatives are deduced.


2018 ◽  
Vol 2018 ◽  
pp. 1-6 ◽  
Author(s):  
Akhter Rasheed ◽  
Saqib Hussain ◽  
Muhammad Asad Zaighum ◽  
Maslina Darus

In this paper, we introduce a new subclass of analytic functions in open unit disc. We obtain coefficient estimates, extreme points, and distortion theorem. We also derived the radii of close-to-convexity and starlikeness for this class.


2017 ◽  
Vol 35 (2) ◽  
pp. 223 ◽  
Author(s):  
Tamer M. Seoudy

In this paper we derive some subordination and superordination results for certain p-valent analytic functions in the open unit disc, which are acted upon by a class of a linear operator. Some of our results improve and generalize previously known results.


Author(s):  
H. Mahzoon ◽  
R. Kargar

Let [Formula: see text] be the family of analytic and normalized functions [Formula: see text] in the open unit disc [Formula: see text]. In this paper, we consider the following classes: [Formula: see text] and [Formula: see text] where [Formula: see text], [Formula: see text] and [Formula: see text]. We show that if [Formula: see text], then [Formula: see text] and [Formula: see text] are greater than [Formula: see text], and if [Formula: see text], then [Formula: see text]. Also, some another interesting properties of the class [Formula: see text] are investigated. Finally, the radius of univalence of 2nd section sum of [Formula: see text] is obtained.


Sign in / Sign up

Export Citation Format

Share Document