scholarly journals Some properties of the generalized Fibonacci and Lucas numbers

Filomat ◽  
2020 ◽  
Vol 34 (8) ◽  
pp. 2655-2665
Author(s):  
Gospava Djordjevic ◽  
Snezana Djordjevic

In this paper we consider the generalized Fibonacci numbers Fn,m and the generalized Lucas numbers Ln,m. Also, we introduce new sequences of numbers An,m, Bn,m, Cn,m and Dn,m. Further, we find the generating functions and some recurrence relations for these sequences of numbers.

Author(s):  
Yuksel Soykan

In this paper, closed forms of the sum formulas Σn k=0 kW3 k and Σn k=1 kW3-k for the cubes of generalized Fibonacci numbers are presented. As special cases, we give sum formulas of Fibonacci, Lucas, Pell, Pell-Lucas, Jacobsthal, Jacobsthal-Lucas numbers. We present the proofs to indicate how these formulas, in general, were discovered. Of course, all the listed formulas may be proved by induction, but that method of proof gives no clue about their discovery. Our work generalize second order recurrence relations.


Author(s):  
Odoardo Brugia ◽  
Piero Filipponi

Here we are concerned with series involving generalized Fibonacci numbersUn  (p,q)and generalized Lucas numbersVn  (p,q). The aim of this paper is to find triples(p,q,r)for which the seriesUn  (p,q)/rnandVn  (p,q)/rn(forrrunning from 0 to infinity) are unconcerned at the introduction of the factorn. The results established in this paper generalize the known fact that the seriesFn/2n(Fnthenth Fibonacci number) and the seriesnFn/2ngive the same result, namely−2/5.


Author(s):  
Yüksel Soykan

In this paper, we introduce the generalized dual hyperbolic Fibonacci numbers. As special cases, we deal with dual hyperbolic Fibonacci and dual hyperbolic Lucas numbers. We present Binet's formulas, generating functions and the summation formulas for these numbers. Moreover, we give Catalan's, Cassini's, d'Ocagne's, Gelin-Cesàro's, Melham's identities and present matrices related with these sequences.


Author(s):  
Y¨uksel Soykan

In this paper, closed forms of the sum formulas Σn k=0 kxkW2 k and Σn k=1 kxkW2 -k for the squares of generalized Fibonacci numbers are presented. As special cases, we give sum formulas of Fibonacci, Lucas, Pell, Pell-Lucas, Jacobsthal, Jacobsthal-Lucas numbers. We present the proofs to indicate how these formulas, in general, were discovered. Of course, all the listed formulas may be proved by induction, but that method of proof gives no clue about their discovery. Our work generalize second order recurrence relations.


Author(s):  
Gospava Djordjevic ◽  
Snezana Djordjevic

In this paper we consider the generalized Jacobsthal Jn,m and the generalized Jacobsthal-Lucas numbers jn,m. Also, we introduce new sequences of numbers An,m, Bn,m, Cn,m and Dn,m. Namely, these new sequences are convolutions of the sequences Jn,m and jn,m. Further, we find the generating functions and some recurrence relations for these sequences of numbers.


Author(s):  
Y¨ uksel Soykan

In this paper, closed forms of the sum formulas for the squares of generalized Fibonacci numbers are presented. As special cases, we give summation formulas of Fibonacci, Lucas, Pell, Pell-Lucas, Jacobsthal and Jacobsthal-Lucas numbers. We present the proofs to indicate how these formulas,in general, were discovered. Of course, all the listed formulas may be proved by induction, but that method of proof gives no clue about their discovery. Our work generalize second order recurrence relations.


Symmetry ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 1334
Author(s):  
Rifat Battaloglu ◽  
Yilmaz Simsek

The main purpose of this paper is to give many new formulas involving the Fibonacci numbers, the golden ratio, the Lucas numbers, and other special numbers. By using generating functions for the special numbers with their functional equations method, we also give many new relations among the Fibonacci numbers, the Lucas numbers, the golden ratio, the Stirling numbers, and other special numbers. Moreover, some applications of the Fibonacci numbers and the golden ratio in chemistry are given.


2020 ◽  
Vol 70 (3) ◽  
pp. 641-656
Author(s):  
Amira Khelifa ◽  
Yacine Halim ◽  
Abderrahmane Bouchair ◽  
Massaoud Berkal

AbstractIn this paper we give some theoretical explanations related to the representation for the general solution of the system of the higher-order rational difference equations$$\begin{array}{} \displaystyle x_{n+1} = \dfrac{1+2y_{n-k}}{3+y_{n-k}},\qquad y_{n+1} = \dfrac{1+2z_{n-k}}{3+z_{n-k}},\qquad z_{n+1} = \dfrac{1+2x_{n-k}}{3+x_{n-k}}, \end{array}$$where n, k∈ ℕ0, the initial values x−k, x−k+1, …, x0, y−k, y−k+1, …, y0, z−k, z−k+1, …, z1 and z0 are arbitrary real numbers do not equal −3. This system can be solved in a closed-form and we will see that the solutions are expressed using the famous Fibonacci and Lucas numbers.


2020 ◽  
pp. 66-82
Author(s):  
Y¨uksel Soykan

In this paper, closed forms of the summation formulas for generalized Fibonacci and Gaussian generalized Fibonacci numbers are presented. Then, some previous results are recovered as particular cases of the present results. As special cases, we give summation formulas of Fibonacci, Lucas, Pell, Pell-Lucas, Jacobsthal, Jacobsthal-Lucas numbers and Gaussian Fibonacci, Gaussian Lucas, Gaussian Pell, Gaussian Pell-Lucas, Gaussian Jacobsthal, Gaussian Jacobsthal-Lucas numbers.


Sign in / Sign up

Export Citation Format

Share Document