scholarly journals Emission of toxic components as a factor of the best practice options for waste management: Application of LCA (Life Cycle Assessment)

2011 ◽  
Vol 65 (2) ◽  
pp. 205-209 ◽  
Author(s):  
Hristina Stevanovic-Carapina ◽  
Jasna Stepanov ◽  
Dunja Savic ◽  
Andjelka Mihajlov

Health and safety have been the major concerns in waste management. Waste must be managed in a way that minimizes risk to human health. Environmental concerns over the management and disposal of waste can be divided into two major areas: conservation of resources and pollution of the environment. Integrated Waste Management (IWM) systems combine waste streams, waste collection, treatment and disposal methods, with the objective of achieving environmental benefits, economic optimization and societal acceptability. Integrated waste management using Life Cycle Assessment (LCA) attempts to offer the most benign options for waste management. LCA is a compilation and evaluation of the inputs, the outputs and the potential environmental impacts of a product system throughout its life cycle. It can be successfully applied to municipal solid waste management systems to identify the overall environmental burdens and to assess the potential environmental impacts. This paper deals with the LCA of the two waste management options for final disposal of municipal waste, landfilling (landfill without landfill gas collection or leachate collection) and sanitary landfilling (landfill with landfill gas collection and recovery and leachate collection and treatments) analyzed for town Sombor, Serbia. The research is conducted with the use of the Software Package IWM-2. The indicators which are used in the assessment are air and water emissions of toxic compounds. The results indicated that waste disposal practice has a significant effect on the emission of the toxic components and environmental burdens. Sanitary landfilling of municipal solid waste significantly reduces toxic emission and negative influence on the environment.

2016 ◽  
Vol 35 (1) ◽  
pp. 79-91 ◽  
Author(s):  
Bhupendra K Sharma ◽  
Munish K Chandel

Dumping of municipal solid waste into uncontrolled dumpsites is the most common method of waste disposal in most cities of India. These dumpsites are posing a serious challenge to environmental quality and sustainable development. Mumbai, which generates over 9000 t of municipal solid waste daily, also disposes of most of its waste in open dumps. It is important to analyse the impact of municipal solid waste disposal today and what would be the impact under integrated waste management schemes. In this study, life cycle assessment methodology was used to determine the impact of municipal solid waste management under different scenarios. Six different scenarios were developed as alternatives to the current practice of open dumping and partially bioreactor landfilling. The scenarios include landfill with biogas collection, incineration and different combinations of recycling, landfill, composting, anaerobic digestion and incineration. Global warming, acidification, eutrophication and human toxicity were assessed as environmental impact categories. The sensitivity analysis shows that if the recycling rate is increased from 10% to 90%, the environmental impacts as compared with present scenario would reduce from 998.43 kg CO2 eq t−1 of municipal solid waste, 0.124 kg SO2 eq t−1, 0.46 kg PO4−3 eq t−1, 0.44 kg 1,4-DB eq t−1 to 892.34 kg CO2 eq t−1, 0.121 kg SO2 eq t−1, 0.36 kg PO4−3 eq t−1, 0.40 kg 1,4-DB eq t−1, respectively. An integrated municipal solid waste management approach with a mix of recycling, composting, anaerobic digestion and landfill had the lowest overall environmental impact. The technologies, such as incineration, would reduce the global warming emission because of the highest avoided emissions, however, human toxicity would increase.


2020 ◽  
Vol 102 ◽  
pp. 795-803 ◽  
Author(s):  
S. Viau ◽  
G. Majeau-Bettez ◽  
L. Spreutels ◽  
R. Legros ◽  
M. Margni ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document