scholarly journals Relativistic length agony continued

2014 ◽  
pp. 55-65 ◽  
Author(s):  
D.V. Redzic

We made an attempt to remedy recent confusing treatments of some basic relativistic concepts and results. Following the argument presented in an earlier paper (Redzic 2008b), we discussed the misconceptions that are recurrent points in the literature devoted to teaching relativity such as: there is no change in the object in Special Relativity, illusory character of relativistic length contraction, stresses and strains induced by Lorentz contraction, and related issues. We gave several examples of the traps of everyday language that lurk in Special Relativity. To remove a possible conceptual and terminological muddle, we made a distinction between the relativistic length reduction and relativistic FitzGerald-Lorentz contraction, corresponding to a passive and an active aspect of length contraction, respectively; we pointed out that both aspects have fundamental dynamical contents. As an illustration of our considerations, we discussed briefly the Dewan-Beran-Bell spaceship paradox and the ?pole in a barn? paradox.

1998 ◽  
Vol 53 (12) ◽  
pp. 977-982 ◽  
Author(s):  
Oleg D. Jefimenko

Abstract Recent advances in the theory of electromagnetic retardation have made it possible to derive the basic equations of the special relativity theory and to duplicate the most important practical results of this theory without using the concepts of relativistic length contraction and time dilation. Thus the reality of these concepts appears to be questionable. It is imperative therefore to reexamine the experimental evidence supporting these concepts. The calculations presented in this paper show that some of the experiments allegedly proving the reality of length contraction and time dilation can be unambiguously interpreted as manifestations of velocity-dependent dynamical interactions taking place within the systems involved in the experiments rather than as manifestations of length contraction or time dilation.


1987 ◽  
Vol 42 (12) ◽  
pp. 1428-1442 ◽  
Author(s):  
F. Winterberg

If all the forces of nature can be reduced to those which follow from a linear combination of a scalar and vector potential, as in electrodynamics, Lorentz invariance can be derived as a dynamic symmetry. All that has to be done is to assume that there is an all pervading substratum or ether, transmitting those forces through space, and that all physical bodies actually observed are held together by those forces. Under this assumption bodies in absolute motion through the substratum suffer a true contraction equal to the Lorentz contraction, and as a result of this contraction clocks in absolute motion go slower by the same amount. The velocity of light appears then to be equal in all inertial reference systems, if Einstein’s clock synchronization convention by reflected light signals is used and which presupposes this result. The Lorentz contraction and time dilation measured on an object at rest relative to an observer who gained a velocity by an accelerated motion is there explained as an illusion caused by a true Lorentz contraction and time dilation of the observer.Both the special relativistic kinematic interpretation and this alternative dynamic interpretation give identical results only in the adiabatic limit where the accelerations are small, because if the Lorentz contraction is a real physical effect, it must take a finite time. However, to break the peculiar interaction symmetry with the ether, and which in the dynamic interpretation is the cause for the Lorentz invariance, the accelerated motions must involve rotation. Only then can non-adiabatic relativity-violating effects be observed and which would establish a preferred reference system at rest with the ether. Under most circumstances relativity-violating effects resulting from such a dynamic interpretation of special relativity would be very small and difficult to observe, a likely reason why they have evaded their detection in the past. For the rotating earth a residual sideral tide has been observed with a superconducting gravimeter, and which could be explained by an “ether wind” of about 300 km /sec at rest with the cosmic microwave background radiation. However, because of the observational uncertainties in measuring the terrestrial tides no definite conclusion can be drawn. A number of new experiments are therefore needed to decide the question regarding a possible weak violation of special relativity.


2021 ◽  
Vol 03 (03) ◽  
pp. 2150012
Author(s):  
B. Raychaudhuri ◽  
S. Ghose ◽  
A. Bhadra

Relativistic length contraction is revisited and a simple but new thought experiment is proposed in which an apparent asymmetric situation is developed between two different inertial frames regarding detection of light that comes from a chamber to an adjacent chamber through a movable slit. The proposed experiment does not involve gravity, rigidity or any other dynamical aspect apart from the kinematics of relative motion; neither does it involve any kind of nonuniformity in motion. The resolution of the seemingly paradoxical situation has finally been discussed.


1998 ◽  
Vol 53 (9) ◽  
pp. 751-754 ◽  
Author(s):  
F. Winterberg

Abstract In the dynamic Lorentz-Poincare interpretation of Lorentz invariance, clocks in absolute motion through a preferred reference system (resp. aether) suffer a true contraction and clocks, as a result of this contraction, go slower by the same amount. With the one-way velocity of light unobservable, there is no way this older pre-Einstein interpretation of special relativity can be tested, except in cases involving rotational motion, where in the Lorentz-Poincare interpretation the interaction symmetry with the aether is broken. In this communication it is shown that Ehrenfest’s paradox, the Lorentz contraction of a rotating disk, has a simple resolution in the dynamic Lorentz-Poincare interpretation of Lorentz invariance and can perhaps be tested against the prediction of special relativity.


Sign in / Sign up

Export Citation Format

Share Document