scholarly journals Exact solutions for the differential equations in fractal heat transfer

2016 ◽  
Vol 20 (suppl. 3) ◽  
pp. 747-750 ◽  
Author(s):  
Chun-Yu Yang ◽  
Yu-Dong Zhang ◽  
Xiao-Jun Yang

In this article we consider the boundary value problems for differential equations in fractal heat transfer. The exact solutions of non-differentiable type are obtained by using the local fractional differential transform method.

2019 ◽  
Vol 23 (3 Part A) ◽  
pp. 1663-1669
Author(s):  
Yong-Ju Yang

In this article, a new method, which is coupled by the variational iteration and reduced differential transform method, is proposed to solve local fractional differential equations. The advantage of the method is that the integral operation of variational iteration is transformed into the differential operation. One test examples is presented to demonstrate the reliability and efficiency of the proposed method.


Author(s):  
Muhammed Yiğider ◽  
Serkan Okur

In this study, solutions of time-fractional differential equations that emerge from science and engineering have been investigated by employing reduced differential transform method. Initially, the definition of the derivatives with fractional order and their important features are given. Afterwards, by employing the Caputo derivative, reduced differential transform method has been introduced. Finally, the numerical solutions of the fractional order Murray equation have been obtained by utilizing reduced differential transform method and results have been compared through graphs and tables. Keywords: Time-fractional differential equations, Reduced differential transform methods, Murray equations, Caputo fractional derivative.


Author(s):  
Fadwa A. M. Madi ◽  
Fawzi Abdelwahid

In this work, we reviewed the two-dimensional differential transform, and introduced the differential transform method (DTM). As an application, we used this technique to find approximate and exact solutions of selected non-linear partial differential equations, with constant or variable coefficients and compared our results with the exact solutions. This shows that the introduced method is very effective, simple to apply to linear and nonlinear problems and it reduces the size of computational work comparing with other methods.


Sign in / Sign up

Export Citation Format

Share Document