scholarly journals A Full-Newton step infeasible-interior-point algorithm for P*(k)-horizontal linear complementarity problems

2015 ◽  
Vol 25 (1) ◽  
pp. 57-72 ◽  
Author(s):  
S. Asadi ◽  
H. Mansouri

In this paper we generalize an infeasible interior-point method for linear optimization to horizontal linear complementarity problem (HLCP). This algorithm starts from strictly feasible iterates on the central path of a perturbed problem that is produced by suitable perturbation in HLCP problem. Then, we use so-called feasibility steps that serves to generate strictly feasible iterates for the next perturbed problem. After accomplishing a few centering steps for the new perturbed problem, we obtain strictly feasible iterates close enough to the central path of the new perturbed problem. The complexity of the algorithm coincides with the best known iteration complexity for infeasible interior-point methods.

2015 ◽  
Vol 08 (03) ◽  
pp. 1550037 ◽  
Author(s):  
Soodabeh Asadi ◽  
Hossein Mansouri ◽  
Zsolt Darvay

In this paper, we improve the infeasible full-Newton interior-point algorithm presented by Mansouri et al. [A full-Newton step [Formula: see text] infeasible interior-point algorithm for linear complementarity problems, Nonlinear Anal. Real World Appl. 12 (2011) 545–561] for monotone linear complementarity problems (MLCPs). In each iteration of Mansouri’s algorithm two types of full-Newton steps are used, one feasibility step and some ordinary (centering) steps. In this paper, we use a new search direction, and reduce the number of the centering steps, so that only one centering step is needed. We prove that the complexity of the algorithm is as good as the best-known complexity for infeasible interior-point methods for MLCPs.


2014 ◽  
Vol 07 (01) ◽  
pp. 1450018
Author(s):  
Behrouz Kheirfam ◽  
Fariba Hasani

This paper deals with an infeasible interior-point algorithm with full-Newton step for linear optimization based on a kernel function, which is an extension of the work of the first author and coworkers (J. Math. Model Algorithms (2013); DOI 10.1007/s10852-013-9227-7). The main iteration of the algorithm consists of a feasibility step and several centrality steps. The centrality step is based on Darvay's direction, while we used a kernel function in the algorithm to induce the feasibility step. For the kernel function, the polynomial complexity can be proved and the result coincides with the best result for infeasible interior-point methods.


2020 ◽  
Vol 177 (2) ◽  
pp. 141-156
Author(s):  
Behrouz Kheirfam

In this paper, we propose a Mizuno-Todd-Ye type predictor-corrector infeasible interior-point method for linear optimization based on a wide neighborhood of the central path. According to Ai-Zhang’s original idea, we use two directions of distinct and orthogonal corresponding to the negative and positive parts of the right side vector of the centering equation of the central path. In the predictor stage, the step size along the corresponded infeasible directions to the negative part is chosen. In the corrector stage by modifying the positive directions system a full-Newton step is removed. We show that, in addition to the predictor step, our method reduces the duality gap in the corrector step and this can be a prominent feature of our method. We prove that the iteration complexity of the new algorithm is 𝒪(n log ɛ−1), which coincides with the best known complexity result for infeasible interior-point methods, where ɛ > 0 is the required precision. Due to the positive direction new system, we improve the theoretical complexity bound for this kind of infeasible interior-point method [1] by a factor of n . Numerical results are also provided to demonstrate the performance of the proposed algorithm.


Author(s):  
Welid Grimes

This paper presents a path-following full-Newton step interior-point algorithm for solving monotone linear complementarity problems. Under new choices of the defaults of the updating barrier parameter [Formula: see text] and the threshold [Formula: see text] which defines the size of the neighborhood of the central-path, we show that the short-step algorithm has the best-known polynomial complexity, namely, [Formula: see text]. Finally, some numerical results are reported to show the efficiency of our algorithm.


Sign in / Sign up

Export Citation Format

Share Document