Successive and Simultaneous Discrimination as a Function of Stimulus-Similarity

1954 ◽  
Vol 67 (2) ◽  
pp. 308 ◽  
Author(s):  
Eugene F. MacCaslin
2018 ◽  
Vol 91 (3) ◽  
pp. 1904-1911 ◽  
Author(s):  
Hui Zhang ◽  
Lizhen Xu ◽  
Wenqiang Chen ◽  
Jun Huang ◽  
Chusheng Huang ◽  
...  

1991 ◽  
Vol 66 (4) ◽  
pp. 1156-1165 ◽  
Author(s):  
V. L. Smith-Swintosky ◽  
C. R. Plata-Salaman ◽  
T. R. Scott

1. Extracellular action potentials were recorded from 50 single neurons in the insular-opercular cortex of two alert cynomolgus monkeys during gustatory stimulation of the tongue and palate. 2. Sixteen stimuli, including salts, sugars, acids, alkaloids, monosodium glutamate, and aspartame, were chosen to represent a wide range of taste qualities. Concentrations were selected to elicit a moderate gustatory response, as determined by reference to previous electrophysiological data or to the human psychophysical literature. 3. The cortical region over which taste-evoked activity could be recorded included the frontal operculum and anterior insula, an area of approximately 75 mm3. Taste-responsive cells constituted 50 (2.7%) of the 1,863 neurons tested. Nongustatory cells responded to mouth movement (20.7%), somatosensory stimulation of the tongue (9.6%), stimulus approach or anticipation (1.7%), and tongue extension (0.6%). The sensitivities of 64.6% of these cortical neurons could not be identified by our stimulation techniques. 4. Taste cells had low spontaneous activity levels (3.7 +/- 3.0 spikes/s, mean +/- SD) and showed little inhibition. They were moderately broadly tuned, with a mean entropy coefficient of 0.76 +/- 0.17. Excitatory responses were typically not robust. 5. Hierarchical cluster analysis was used to determine whether neurons could be divided into discrete types, as defined by their response profiles to the entire stimulus array. There was an apparent division of response profiles into four general categories, with primary sensitivities to sodium (n = 18), glucose (n = 15), quinine (n = 12), and acid (n = 5). However, these categories were not statistically independent. Therefore the notion of functionally distinct neuron types was not supported by an analysis of the distribution of response profiles. It was the case, however, that neurons in the sodium category could be distinguished from other neurons by their relative specificity. 6. The similarity among the taste qualities represented by this stimulus array was assessed by calculating correlations between the activity profiles they elicited from these 50 neurons. The results generally confirmed expectations derived from human psychophysical studies. In a multidimensional representation of stimulus similarity, there were groups that contained acids, sodium salts, and chemicals that humans label bitter and sweet. 7. The small proportion of insular-opercular neurons that are taste sensitive and the low discharge rates that taste stimuli are able to evoke from them suggest a wider role for this cortical area than just gustatory coding.(ABSTRACT TRUNCATED AT 400 WORDS)


2017 ◽  
Vol 118 (4) ◽  
pp. 2458-2469 ◽  
Author(s):  
Wei Song Ong ◽  
Koorosh Mirpour ◽  
James W. Bisley

We can search for and locate specific objects in our environment by looking for objects with similar features. Object recognition involves stimulus similarity responses in ventral visual areas and task-related responses in prefrontal cortex. We tested whether neurons in the lateral intraparietal area (LIP) of posterior parietal cortex could form an intermediary representation, collating information from object-specific similarity map representations to allow general decisions about whether a stimulus matches the object being looked for. We hypothesized that responses to stimuli would correlate with how similar they are to a sample stimulus. When animals compared two peripheral stimuli to a sample at their fovea, the response to the matching stimulus was similar, independent of the sample identity, but the response to the nonmatch depended on how similar it was to the sample: the more similar, the greater the response to the nonmatch stimulus. These results could not be explained by task difficulty or confidence. We propose that LIP uses its known mechanistic properties to integrate incoming visual information, including that from the ventral stream about object identity, to create a dynamic representation that is concise, low dimensional, and task relevant and that signifies the choice priorities in mental matching behavior. NEW & NOTEWORTHY Studies in object recognition have focused on the ventral stream, in which neurons respond as a function of how similar a stimulus is to their preferred stimulus, and on prefrontal cortex, where neurons indicate which stimulus is being looked for. We found that parietal area LIP uses its known mechanistic properties to form an intermediary representation in this process. This creates a perceptual similarity map that can be used to guide decisions in prefrontal areas.


2010 ◽  
Vol 3 (9) ◽  
pp. 511-511 ◽  
Author(s):  
S. R Allred ◽  
J. Y Skiver ◽  
B. Jagadeesh

ACS Sensors ◽  
2021 ◽  
Author(s):  
Wenjun Zhong ◽  
Qiufang Yang ◽  
Kerui Fang ◽  
Dan Xiao ◽  
Cuisong Zhou

Sign in / Sign up

Export Citation Format

Share Document