A functional central limit theorem for the jump counts of Markov processes with an application to Jackson networks

1995 ◽  
Vol 27 (2) ◽  
pp. 476-509
Author(s):  
Venkat Anantharam ◽  
Takis Konstantopoulos

Each feasible transition between two distinct states i and j of a continuous-time, uniform, ergodic, countable-state Markov process gives a counting process counting the number of such transitions executed by the process. Traffic processes in Markovian queueing networks can, for instance, be represented as sums of such counting processes. We prove joint functional central limit theorems for the family of counting processes generated by all feasible transitions. We characterize which weighted sums of counts have zero covariance in the limit in terms of balance equations in the transition diagram of the process. Finally, we apply our results to traffic processes in a Jackson network. In particular, we derive simple formulas for the asymptotic covariances between the processes counting the number of customers moving between pairs of nodes in such a network.

1995 ◽  
Vol 27 (02) ◽  
pp. 476-509
Author(s):  
Venkat Anantharam ◽  
Takis Konstantopoulos

Each feasible transition between two distinct states i and j of a continuous-time, uniform, ergodic, countable-state Markov process gives a counting process counting the number of such transitions executed by the process. Traffic processes in Markovian queueing networks can, for instance, be represented as sums of such counting processes. We prove joint functional central limit theorems for the family of counting processes generated by all feasible transitions. We characterize which weighted sums of counts have zero covariance in the limit in terms of balance equations in the transition diagram of the process. Finally, we apply our results to traffic processes in a Jackson network. In particular, we derive simple formulas for the asymptotic covariances between the processes counting the number of customers moving between pairs of nodes in such a network.


1989 ◽  
Vol 21 (02) ◽  
pp. 451-469 ◽  
Author(s):  
Zhang Hanqin ◽  
Wang Rongxin

The queueing system considered in this paper consists of r independent arrival channels and s independent service channels, where, as usual, the arrival and service channels are independent. In the queueing system, each server of the system has his own queue and arriving customers join the shortest line in the system. We give functional central limit theorems for the stochastic processes characterizing this system after appropriately scaling and translating the processes in traffic intensity ρ > 1.


1979 ◽  
Vol 11 (02) ◽  
pp. 422-438 ◽  
Author(s):  
Benjamin Melamed

The equilibrium behavior of Jackson queueing networks (Poisson arrivals, exponential servers and Bernoulli switches) has recently been investigated in some detail. In particular, it was found that in equilibrium, the traffic processes on the so-called exit arcs of a Jackson network with single server nodes constitute Poisson processes—a result extending Burke's theorem from single queues to networks of queues. A conjecture made by Burke and others contends that the traffic processes on non-exit arcs cannot be Poisson in equilibrium. This paper proves this conjecture to be true for a variety of Jackson networks with single server nodes. Subsequently, a number of characterizations of the equilibrium traffic streams on the arcs of open Jackson networks emerge, whereby Poisson-related stochastic properties of traffic streams are shown to be equivalent to a simple graph-theoretical property of the underlying arcs. These results then help to identify some inherent limitations on the feasibility of equilibrium decompositions of Jackson networks, and to point out conditions under which further decompositions are ‘approximately’ valid.


1979 ◽  
Vol 11 (2) ◽  
pp. 422-438 ◽  
Author(s):  
Benjamin Melamed

The equilibrium behavior of Jackson queueing networks (Poisson arrivals, exponential servers and Bernoulli switches) has recently been investigated in some detail. In particular, it was found that in equilibrium, the traffic processes on the so-called exit arcs of a Jackson network with single server nodes constitute Poisson processes—a result extending Burke's theorem from single queues to networks of queues.A conjecture made by Burke and others contends that the traffic processes on non-exit arcs cannot be Poisson in equilibrium. This paper proves this conjecture to be true for a variety of Jackson networks with single server nodes. Subsequently, a number of characterizations of the equilibrium traffic streams on the arcs of open Jackson networks emerge, whereby Poisson-related stochastic properties of traffic streams are shown to be equivalent to a simple graph-theoretical property of the underlying arcs. These results then help to identify some inherent limitations on the feasibility of equilibrium decompositions of Jackson networks, and to point out conditions under which further decompositions are ‘approximately’ valid.


1998 ◽  
Vol 14 (2) ◽  
pp. 260-284 ◽  
Author(s):  
Xiaohong Chen ◽  
Halbert White

We obtain new central limit theorems (CLT's) and functional central limit theorems (FCLT's) for Hilbert-valued arrays near epoch dependent on mixing processes, and also new FCLT's for general Hilbert-valued adapted dependent heterogeneous arrays. These theorems are useful in delivering asymptotic distributions for parametric and nonparametric estimators and their functionals in time series econometrics. We give three significant applications for near epoch dependent observations: (1) A new CLT for any plug-in estimator of a cumulative distribution function (c.d.f.) (e.g., an empirical c.d.f., or a c.d.f. estimator based on a kernel density estimator), which can in turn deliver distribution results for many Von Mises functionals; (2) a new limiting distribution result for degenerate U-statistics, which delivers distribution results for Bierens's integrated conditional moment tests; (3) a new functional central limit result for Hilbert-valued stochastic approximation procedures, which delivers distribution results for nonparametric recursive generalized method of moment estimators, including nonparametric adaptive learning models.


Sign in / Sign up

Export Citation Format

Share Document