Characterizations of Poisson traffic streams in Jackson queueing networks

1979 ◽  
Vol 11 (02) ◽  
pp. 422-438 ◽  
Author(s):  
Benjamin Melamed

The equilibrium behavior of Jackson queueing networks (Poisson arrivals, exponential servers and Bernoulli switches) has recently been investigated in some detail. In particular, it was found that in equilibrium, the traffic processes on the so-called exit arcs of a Jackson network with single server nodes constitute Poisson processes—a result extending Burke's theorem from single queues to networks of queues. A conjecture made by Burke and others contends that the traffic processes on non-exit arcs cannot be Poisson in equilibrium. This paper proves this conjecture to be true for a variety of Jackson networks with single server nodes. Subsequently, a number of characterizations of the equilibrium traffic streams on the arcs of open Jackson networks emerge, whereby Poisson-related stochastic properties of traffic streams are shown to be equivalent to a simple graph-theoretical property of the underlying arcs. These results then help to identify some inherent limitations on the feasibility of equilibrium decompositions of Jackson networks, and to point out conditions under which further decompositions are ‘approximately’ valid.

1979 ◽  
Vol 11 (2) ◽  
pp. 422-438 ◽  
Author(s):  
Benjamin Melamed

The equilibrium behavior of Jackson queueing networks (Poisson arrivals, exponential servers and Bernoulli switches) has recently been investigated in some detail. In particular, it was found that in equilibrium, the traffic processes on the so-called exit arcs of a Jackson network with single server nodes constitute Poisson processes—a result extending Burke's theorem from single queues to networks of queues.A conjecture made by Burke and others contends that the traffic processes on non-exit arcs cannot be Poisson in equilibrium. This paper proves this conjecture to be true for a variety of Jackson networks with single server nodes. Subsequently, a number of characterizations of the equilibrium traffic streams on the arcs of open Jackson networks emerge, whereby Poisson-related stochastic properties of traffic streams are shown to be equivalent to a simple graph-theoretical property of the underlying arcs. These results then help to identify some inherent limitations on the feasibility of equilibrium decompositions of Jackson networks, and to point out conditions under which further decompositions are ‘approximately’ valid.


2000 ◽  
Vol 32 (03) ◽  
pp. 824-843 ◽  
Author(s):  
Balaji Prabhakar ◽  
Nicholas Bambos ◽  
T. S. Mountford

This paper investigates the dynamics of a synchronization node in isolation, and of networks of service and synchronization nodes. A synchronization node consists of M infinite capacity buffers, where tokens arriving on M distinct random input flows are stored (there is one buffer for each flow). Tokens are held in the buffers until one is available from each flow. When this occurs, a token is drawn from each buffer to form a group-token, which is instantaneously released as a synchronized departure. Under independent Poisson inputs, the output of a synchronization node is shown to converge weakly (and in certain cases strongly) to a Poisson process with rate equal to the minimum rate of the input flows. Hence synchronization preserves the Poisson property, as do superposition, Bernoulli sampling and M/M/1 queueing operations. We then consider networks of synchronization and exponential server nodes with Bernoulli routeing and exogenous Poisson arrivals, extending the standard Jackson network model to include synchronization nodes. It is shown that if the synchronization skeleton of the network is acyclic (i.e. no token visits any synchronization node twice although it may visit a service node repeatedly), then the distribution of the joint queue-length process of only the service nodes is product form (under standard stability conditions) and easily computable. Moreover, the network output flows converge weakly to Poisson processes. Finally, certain results for networks with finite capacity buffers are presented, and the limiting behavior of such networks as the buffer capacities become large is studied.


2003 ◽  
Vol 40 (2) ◽  
pp. 293-304 ◽  
Author(s):  
Amy R. Ward ◽  
Nicholas Bambos

In this paper, we consider a single-server queue with stationary input, where each job joining the queue has an associated deadline. The deadline is a time constraint on job sojourn time and may be finite or infinite. If the job does not complete service before its deadline expires, it abandons the queue and the partial service it may have received up to that point is wasted. When the queue operates under a first-come-first served discipline, we establish conditions under which the actual workload process—that is, the work the server eventually processes—is unstable, weakly stable, and strongly stable. An interesting phenomenon observed is that in a nontrivial portion of the parameter space, the queue is weakly stable, but not strongly stable. We also indicate how our results apply to other nonidling service disciplines. We finally extend the results for a single node to acyclic (feed-forward) networks of queues with either per-queue or network-wide deadlines.


1989 ◽  
Vol 21 (3) ◽  
pp. 681-701 ◽  
Author(s):  
Nicholas Bambos ◽  
Jean Walrand

We consider a single server first-come-first-served queue with a stationary and ergodic input. The service rate is a general function of the workload in the queue. We provide the necessary and sufficient conditions for the stability of the system and the asymptotic convergence of the workload process to a finite stationary process at large times. Then, we consider acyclic networks of queues in which the service rate of any queue is a function of the workloads of this and of all the preceding queues. The stability problem is again studied. The results are then extended to analogous systems with periodic inputs.


1989 ◽  
Vol 21 (03) ◽  
pp. 681-701 ◽  
Author(s):  
Nicholas Bambos ◽  
Jean Walrand

We consider a single server first-come-first-served queue with a stationary and ergodic input. The service rate is a general function of the workload in the queue. We provide the necessary and sufficient conditions for the stability of the system and the asymptotic convergence of the workload process to a finite stationary process at large times. Then, we consider acyclic networks of queues in which the service rate of any queue is a function of the workloads of this and of all the preceding queues. The stability problem is again studied. The results are then extended to analogous systems with periodic inputs.


2000 ◽  
Vol 32 (3) ◽  
pp. 824-843 ◽  
Author(s):  
Balaji Prabhakar ◽  
Nicholas Bambos ◽  
T. S. Mountford

This paper investigates the dynamics of a synchronization node in isolation, and of networks of service and synchronization nodes. A synchronization node consists of M infinite capacity buffers, where tokens arriving on M distinct random input flows are stored (there is one buffer for each flow). Tokens are held in the buffers until one is available from each flow. When this occurs, a token is drawn from each buffer to form a group-token, which is instantaneously released as a synchronized departure. Under independent Poisson inputs, the output of a synchronization node is shown to converge weakly (and in certain cases strongly) to a Poisson process with rate equal to the minimum rate of the input flows. Hence synchronization preserves the Poisson property, as do superposition, Bernoulli sampling and M/M/1 queueing operations. We then consider networks of synchronization and exponential server nodes with Bernoulli routeing and exogenous Poisson arrivals, extending the standard Jackson network model to include synchronization nodes. It is shown that if the synchronization skeleton of the network is acyclic (i.e. no token visits any synchronization node twice although it may visit a service node repeatedly), then the distribution of the joint queue-length process of only the service nodes is product form (under standard stability conditions) and easily computable. Moreover, the network output flows converge weakly to Poisson processes. Finally, certain results for networks with finite capacity buffers are presented, and the limiting behavior of such networks as the buffer capacities become large is studied.


1995 ◽  
Vol 27 (2) ◽  
pp. 476-509
Author(s):  
Venkat Anantharam ◽  
Takis Konstantopoulos

Each feasible transition between two distinct states i and j of a continuous-time, uniform, ergodic, countable-state Markov process gives a counting process counting the number of such transitions executed by the process. Traffic processes in Markovian queueing networks can, for instance, be represented as sums of such counting processes. We prove joint functional central limit theorems for the family of counting processes generated by all feasible transitions. We characterize which weighted sums of counts have zero covariance in the limit in terms of balance equations in the transition diagram of the process. Finally, we apply our results to traffic processes in a Jackson network. In particular, we derive simple formulas for the asymptotic covariances between the processes counting the number of customers moving between pairs of nodes in such a network.


2003 ◽  
Vol 40 (02) ◽  
pp. 293-304
Author(s):  
Amy R. Ward ◽  
Nicholas Bambos

In this paper, we consider a single-server queue with stationary input, where each job joining the queue has an associated deadline. The deadline is a time constraint on job sojourn time and may be finite or infinite. If the job does not complete service before its deadline expires, it abandons the queue and the partial service it may have received up to that point is wasted. When the queue operates under a first-come-first served discipline, we establish conditions under which the actual workload process—that is, the work the server eventually processes—is unstable, weakly stable, and strongly stable. An interesting phenomenon observed is that in a nontrivial portion of the parameter space, the queue is weakly stable, but not strongly stable. We also indicate how our results apply to other nonidling service disciplines. We finally extend the results for a single node to acyclic (feed-forward) networks of queues with either per-queue or network-wide deadlines.


1995 ◽  
Vol 27 (02) ◽  
pp. 476-509
Author(s):  
Venkat Anantharam ◽  
Takis Konstantopoulos

Each feasible transition between two distinct states i and j of a continuous-time, uniform, ergodic, countable-state Markov process gives a counting process counting the number of such transitions executed by the process. Traffic processes in Markovian queueing networks can, for instance, be represented as sums of such counting processes. We prove joint functional central limit theorems for the family of counting processes generated by all feasible transitions. We characterize which weighted sums of counts have zero covariance in the limit in terms of balance equations in the transition diagram of the process. Finally, we apply our results to traffic processes in a Jackson network. In particular, we derive simple formulas for the asymptotic covariances between the processes counting the number of customers moving between pairs of nodes in such a network.


1987 ◽  
Vol 24 (02) ◽  
pp. 495-510 ◽  
Author(s):  
Austin J. Lemoine

This paper is about representations for equilibrium sojourn time distributions in Jackson networks of queues. For a network with N single-server nodes let hi be the Laplace transform of the residual system sojourn time for a customer ‘arriving' to node i, ‘arrival' meaning external input or internal transfer. The transforms {hi : i = 1, ···, N} are shown to satisfy a system of equations we call the network flow equations. These equations lead to a general recursive representation for the higher moments of the sojourn time variables {Ti : i = 1, ···, N}. This recursion is discussed and then, by way of illustration, applied to the single-server Markovian queue with feedback.


Sign in / Sign up

Export Citation Format

Share Document