Lampanyctus hubbsi, a New Myctophid Fish from the East-Central Tropical Pacific Ocean, with Notes on the Related, Sympatric Eastern Pacific Species, L. omostigma and L. parvicauda

Copeia ◽  
1963 ◽  
Vol 1963 (1) ◽  
pp. 16 ◽  
Author(s):  
Robert L. Wisner
2007 ◽  
Vol 135 (10) ◽  
pp. 3599-3612 ◽  
Author(s):  
Barry B. Ma ◽  
Jeffrey A. Nystuen

Abstract Several years of long-term high temporal resolution ocean ambient noise data from the tropical Pacific Ocean are analyzed to detect oceanic rainfall. Ocean ambient noise generated by rainfall and wind are identified through an acoustic discrimination process. Once the spectra are classified, wind speed and rainfall rates are quantified using the empirical algorithms. Rainfall-rate time series have temporal resolutions of 1 min. These data provide a unique opportunity to study the rainfall events and patterns in two different climate regions, the intertropical convergence zone (ITCZ) of the tropical eastern Pacific (10° and 12°N, 95°W) and the equatorial western Pacific (0°, 165°E). At both locations the rain events have a mean rainfall of 15 mm h−1, but the events are longer in the eastern Pacific. After the rain event is defined, the probability that a rain event can be detected using the change in air–sea temperature often associated with the rainfall is investigated. The result shows that the rain event accompanied by the decrease of air temperature is a general feature, but that using the temperature difference to detect the rainfall has a very high false alarm rate, which makes it unsuitable for rainfall detection.


1996 ◽  
Vol 62 (3) ◽  
pp. 447-453 ◽  
Author(s):  
Hwan-Sook Seo ◽  
Yasushi Endo ◽  
Kenshiro Fujimoto ◽  
Hikaru Watanabe ◽  
Kouichi Kawaguchi

2012 ◽  
Vol 25 (10) ◽  
pp. 3549-3565 ◽  
Author(s):  
Michael A. Alexander ◽  
Hyodae Seo ◽  
Shang Ping Xie ◽  
James D. Scott

Abstract The recently released NCEP Climate Forecast System Reanalysis (CFSR) is used to examine the response to ENSO in the northeast tropical Pacific Ocean (NETP) during 1979–2009. The normally cool Pacific sea surface temperatures (SSTs) associated with wind jets through the gaps in the Central American mountains at Tehuantepec, Papagayo, and Panama are substantially warmer (colder) than the surrounding ocean during El Niño (La Niña) events. Ocean dynamics generate the ENSO-related SST anomalies in the gap wind regions as the surface fluxes damp the SSTs anomalies, while the Ekman heat transport is generally in quadrature with the anomalies. The ENSO-driven warming is associated with large-scale deepening of the thermocline; with the cold thermocline water at greater depths during El Niño in the NETP, it is less likely to be vertically mixed to the surface, particularly in the gap wind regions where the thermocline is normally very close to the surface. The thermocline deepening is enhanced to the south of the Costa Rica Dome in the Papagayo region, which contributes to the local ENSO-driven SST anomalies. The NETP thermocline changes are due to coastal Kelvin waves that initiate westward-propagating Rossby waves, and possibly ocean eddies, rather than by local Ekman pumping. These findings were confirmed with regional ocean model experiments: only integrations that included interannually varying ocean boundary conditions were able to simulate the thermocline deepening and localized warming in the NETP during El Niño events; the simulation with variable surface fluxes, but boundary conditions that repeated the seasonal cycle, did not.


2012 ◽  
Vol 87 ◽  
pp. 194-209 ◽  
Author(s):  
Stella C. Woodard ◽  
Deborah J. Thomas ◽  
Franco Marcantonio

1998 ◽  
Vol 103 (C13) ◽  
pp. 30855-30871 ◽  
Author(s):  
Sonia Bauer ◽  
Mark S. Swenson ◽  
Annalisa Griffa ◽  
Arthur J. Mariano ◽  
Ken Owens

Sign in / Sign up

Export Citation Format

Share Document