sea temperature
Recently Published Documents


TOTAL DOCUMENTS

429
(FIVE YEARS 105)

H-INDEX

42
(FIVE YEARS 5)

Abstract This study investigated the diurnal cycle of convection over Sumatra Island in an active phase of the Madden-Julian Oscillation (MJO) during the Pre-Years of the Maritime Continent (YMC) observation campaign in December 2015 based on in-situ and satellite observations and a convection-permitting numerical model. Observations suggest that before the active phase of the MJO in early December, convection occurred frequently over the island during the afternoon and at midnight. By contrast, during the active phase of the MJO in mid-December, afternoon convection over the island was delayed and suppressed, and midnight convection was suppressed. Numerical experiments also successfully replicated the main features of the observed modulations. In general, during the active phase of the MJO, the troposphere became drier in the Sumatra region. While the clouds reduced the solar radiation over the land, the sea breeze was also found to be delayed and weakened. As a result, the afternoon convection initiation was delayed and weakened. Further analyses suggested that the sea breeze was weakened mainly due to the orographic stagnation effect rather than the slightly reduced land-sea temperature contrast. On the other hand, the increased stratiform-anvil clouds induced the anomalous evaporative cooling in the mid-troposphere and generated island-scale subsidence during the nighttime, which finally led to the suppression of inland convection. Overall, our study reveals the modulation of diurnal convection over Sumatra Island by an active phase of the MJO and also shows the potential role of land-sea interaction in convection initiation and maintenance.


Marine Drugs ◽  
2022 ◽  
Vol 20 (1) ◽  
pp. 64
Author(s):  
Martina Čagalj ◽  
Danijela Skroza ◽  
María del Carmen Razola-Díaz ◽  
Vito Verardo ◽  
Daniela Bassi ◽  
...  

The underexplored biodiversity of seaweeds has recently drawn great attention from researchers to find the bioactive compounds that might contribute to the growth of the blue economy. In this study, we aimed to explore the effect of seasonal growth (from May to September) on the in vitro antioxidant (FRAP, DPPH, and ORAC) and antimicrobial effects (MIC and MBC) of Cystoseira compressa collected in the Central Adriatic Sea. Algal compounds were analyzed by UPLC-PDA-ESI-QTOF, and TPC and TTC were determined. Fatty acids, among which oleic acid, palmitoleic acid, and palmitic acid were the dominant compounds in samples. The highest TPC, TTC and FRAP were obtained for June extract, 83.4 ± 4.0 mg GAE/g, 8.8 ± 0.8 mg CE/g and 2.7 ± 0.1 mM TE, respectively. The highest ORAC value of 72.1 ± 1.2 µM TE was obtained for the August samples, and all samples showed extremely high free radical scavenging activity and DPPH inhibition (>80%). The MIC and MBC results showed the best antibacterial activity for the June, July and August samples, when sea temperature was the highest, against Listeria monocytogenes, Staphylococcus aureus, and Salmonella enteritidis. The results show C. compressa as a potential species for the industrial production of nutraceuticals or functional food ingredients.


The Holocene ◽  
2021 ◽  
pp. 095968362110665
Author(s):  
Fernando Arenas ◽  
Harumi Fujita ◽  
Alberto Sánchez

Oceanic characteristics of the Holocene are used to understand climatic patterns and phenomena that affect marine and human communities. Likewise, past marine conditions can be reconstructed from surface sea temperature (SST), using stable oxygen isotopes in bivalve shells. The objective of this study was to calculate Holocene summer SSTs for La Paz Bay, by analyzing δ18O of 14C dated bivalve shells ( Chione californiensis) from a Holocene camp site located in Cañada de La Enfermería, Baja California Sur, México. Aragonite was extracted from the shells’ umbo, representing the summer growth season during the first year of life. δ18O value of C. californiensis is −1.9 ± 0.1‰ at present, and varied between −1.3‰ and −2.6‰ during the last 9 ky. In 9469 BP, 8396 BP, and 7708 BP, δ18O values were similar to those of the present. In 7857 BP, 7805 BP, and 7804 BP, δ18O was 18O depleted (0.6–0.9‰), indicating warmer summer SSTs versus the present. In 7070 BP, 6945 BP, and 2087 BP, δ18O was enriched in 18O (0.3–0.4‰), suggesting colder SSTs versus the present. This study coincides with other paleotemperature studies for the region and allows us to address the effect of changing SST on this marine resource, its use by human communities of the past, and its effects on human presence in the area with respect to climate variability.


2021 ◽  
Vol 13 (24) ◽  
pp. 13810
Author(s):  
Susana Lincoln ◽  
Paul Buckley ◽  
Ella L. Howes ◽  
Katherine M. Maltby ◽  
John K. Pinnegar ◽  
...  

The Regional Organization for the Protection of the Marine Environment (ROPME) Sea Area (RSA) in the northern Indian Ocean, which comprises the Gulf, the Gulf of Oman and the northern Arabian Sea, already experiences naturally extreme environmental conditions and incorporates one of the world’s warmest seas. There is growing evidence that climate change is already affecting the environmental conditions of the RSA, in areas including sea temperature, salinity, dissolved oxygen, pH, and sea level, which are set to continue changing over time. The cumulative impacts of these changes on coastal and marine ecosystems and dependent societies are less well documented, but are likely to be significant, especially in the context of other human stressors. This review represents the first regional synthesis of observed and predicted climate change impacts on marine and coastal ecosystems across the ROPME Sea Area and their implications for dependent societies. Climate-driven ecological changes include loss of coral reefs due to bleaching and the decline of fish populations, while socio-economic impacts include physical impacts from sea-level rise and cyclones, risk to commercial wild capture fisheries, disruption to desalination systems and loss of tourism. The compilation of this review is aimed to support the development of targeted adaptation actions and to direct future research within the RSA.


Author(s):  
Muhammad Bayu Nirwana ◽  
Dewi Wulandari

The linear regression model is employed when it is identified a linear relationship between the dependent and independent variables. In some cases, the relationship between the two variables does not generate a linear line, that is, there is a change point at a certain point. Therefore, themaximum likelihood estimator for the linear regression does not produce an accurate model. The objective of this study is to presents the performance of simple linear and segmented linear regression models in which there are breakpoints in the data. The modeling is performed onthe data of depth and sea temperature. The model results display that the segmented linear regression is better in modeling data which contain changing points than the classical one.Received September 1, 2021Revised November 2, 2021Accepted November 11, 2021


Molecules ◽  
2021 ◽  
Vol 26 (23) ◽  
pp. 7328
Author(s):  
Rodrigo Villanueva-Silva ◽  
Patricia Velez ◽  
Meritxell Riquelme ◽  
Carlos A. Fajardo-Hernández ◽  
Anahí Martínez-Cárdenas ◽  
...  

A collection of 29 cultivable fungal strains isolated from deep-sea sediments of the Gulf of Mexico were cultivated under the “one strain, many compounds” approach to explore their chemical diversity and antimicrobial potential. From the 87 extracts tested, over 50% showed antimicrobial activity, and the most active ones were those from cultures grown at 4 °C in darkness for 60 days (resembling deep-sea temperature). PCA analysis of the LC-MS data of all the extracts confirmed that culture temperature is the primary factor in the variation of the 4462 metabolite features, accounting for 21.3% of the variation. The bioactivity-guided and conventional chemical studies of selected fungal strains allowed the identification of several active and specialized metabolites. Finally, metabolomics analysis by GNPS molecular networking and manual dereplication revealed the biosynthetic potential of these species to produce interesting chemistry. This work uncovers the chemical and biological study of marine-derived fungal strains from deep-sea sediments of the Gulf of Mexico.


2021 ◽  
Vol 288 (1964) ◽  
Author(s):  
James C. Bull ◽  
Owen R. Jones ◽  
Luca Börger ◽  
Novella Franconi ◽  
Roma Banga ◽  
...  

There are numerous examples of phenological shifts that are recognized both as indicators of climate change and drivers of ecosystem change. A pressing challenge is to understand the causal mechanisms by which climate affects phenology. We combined annual population census data and individual longitudinal data (1992–2018) on grey seals, Halicheorus grypus , to quantify the relationship between pupping season phenology and sea surface temperature. A temperature increase of 2°C was associated with a pupping season advance of approximately seven days at the population level. However, we found that maternal age, rather than sea temperature, accounted for changes in pupping date by individuals. Warmer years were associated with an older average age of mothers, allowing us to explain phenological observations in terms of a changing population age structure. Finally, we developed a matrix population model to test whether our observations were consistent with changes to the stable age distribution. This could not fully account for observed phenological shift, strongly suggesting transient modification of population age structure, for example owing to immigration. We demonstrate a novel mechanism for phenological shifts under climate change in long-lived, age- or stage-structured species with broad implications for dynamics and resilience, as well as population management.


2021 ◽  
Author(s):  
Y. S. Hii ◽  
M. H. Mohd ◽  
Mohd Izzat Mohd Thiyahuddin ◽  
M. A. A Rahman ◽  
C. H. Tan

Abstract The current study improved the predictive capability of the biological reefing viability index (BRVI) calibrated using local data. The prediction capability of the BRVI improved from 61% to 76% accuracy out of the 181 locations where the underwater videos available for verification. The BRVI includes corals larvae density, age of larvae at site, sea current, sea temperature, chlorophyll-a, water depth and sediment type to predict biological productivity of an area. Among the parameters, corals larvae density and age of the larvae are the most critical parameters that influent establishment of new biological ecosystem. The BRVI uses settlement of corals larvae as the precursors for the establishment of new habitats in the offshore environment because scleractinian corals is known to be able to form backbone of a new habitat in the environment. In this approach, the BRVI focuses on habitat creation instead of just being a fish aggregating device (FAD) when an artificial reef is deployed in an area. The BRVI can be used as a rapid screening tool to identified potential area for deployment of artificial reefs. The BRVI could reduce the chances of artificial reefs deployment that failed to address its objectives and intended outcomes.


Sign in / Sign up

Export Citation Format

Share Document