Neural Recordings From the Lateral Line in Free-Swimming Toadfish, Opsanus tau

2003 ◽  
Vol 205 (2) ◽  
pp. 216-218 ◽  
Author(s):  
L. M. Palmer ◽  
B. A. Giuffrida ◽  
A. F. Mensinger
2000 ◽  
Vol 355 (1401) ◽  
pp. 1305-1308 ◽  
Author(s):  
Allen F. Mensinger ◽  
Max Deffienbaugh

An acoustic neural telemetry tag has been developed for recording from free–swimming aquatic animals. Microwire electrodes were implanted into the VIIIth nerve of the toadfish, Opsanus tau , and interfaced to the subdermally implanted tag. The telemetry tag frequency modulates the neural signal, converting it into a varying frequency, which is amplified and transmitted acoustically (centre frequency of 90 kHz and a 20 kHz bandwidth). This acoustic signal is detected by a receiver hydrophone, and the receiver reconstructs the full neural waveform from the acoustic signal. However, due to the multipath environment in the experimental aquarium, the acoustic signal is quickly degraded as the hydrophone is moved away from the source. In order to receive the signal independent of fish position, an anechoic aquarium was designed. Streams of microbubbles ( ca. 70 μm diameter) were generated to produce a curtain of sound–absorptive material along the walls and water surface of the aquarium. Microbubble generation significantly reduced the multipath artefacts, and allowed signal discrimination independent of fish and hydrophone position. The anechoic aquarium will allow the recording of neural activity from freeswimming fishes in quasi–natural habitats, thus allowing better understanding of the neural mechanisms of behaviour.


2004 ◽  
Vol 92 (2) ◽  
pp. 1034-1041 ◽  
Author(s):  
Lucy M. Palmer ◽  
Allen F. Mensinger

Inductive neural telemetry was used to record from microwire electrodes chronically implanted into the anterior lateral line nerve of the toadfish, Opsanus tau. Spontaneous neural activity and the response of lateral line fibers to water current were continually monitored from 17 primary afferent fibers before, during, and after the administration of the anesthetic tricaine (MS-222). Significant decrease in spontaneous and evoked activity and increase in interspike interval was noted when anesthetic concentrations were ≥0.010%. Neural activity returned to control levels within ∼90 min of anesthetic withdrawal. Decreasing the pH of the solution without the anesthetic caused transient heightened sensitivity, indicating that tricaine and not the concurrent drop in pH was responsible for the decrease in sensitivity during anesthesia. During a secondary challenge with the anesthetic 24 h after the first, fibers initially showed faster recovery however overall recovery kinetics were similar. Although high tricaine concentration was correlated with decreased neural sensitivity, the concentrations normally used to maintain anesthesia in the toadfish did not have significant effect on the evoked firing rate. Thus given sufficient time to recover from the induction of surgical anesthesia, it may be possible to maintain the animal under light anesthesia while minimizing the physiological effects of tricaine.


2018 ◽  
Vol 222 (2) ◽  
pp. jeb190587 ◽  
Author(s):  
Allen F. Mensinger ◽  
Jacey C. Van Wert ◽  
Loranzie S. Rogers
Keyword(s):  

2018 ◽  
Vol 221 (23) ◽  
pp. jeb180679 ◽  
Author(s):  
Emily A. Cardinal ◽  
Craig A. Radford ◽  
Allen F. Mensinger

Author(s):  
K. Hama

The lateral line organs of the sea eel consist of canal and pit organs which are different in function. The former is a low frequency vibration detector whereas the latter functions as an ion receptor as well as a mechano receptor.The fine structure of the sensory epithelia of both organs were studied by means of ordinary transmission electron microscope, high voltage electron microscope and of surface scanning electron microscope.The sensory cells of the canal organ are polarized in front-caudal direction and those of the pit organ are polarized in dorso-ventral direction. The sensory epithelia of both organs have thinner surface coats compared to the surrounding ordinary epithelial cells, which have very thick fuzzy coatings on the apical surface.


Sign in / Sign up

Export Citation Format

Share Document