scholarly journals Sensitivity of the anterior lateral line to natural stimuli in the oyster toadfish, Opsanus tau (Linnaeus)

2005 ◽  
Vol 208 (18) ◽  
pp. 3441-3450 ◽  
Author(s):  
L. M. Palmer
2004 ◽  
Vol 92 (2) ◽  
pp. 1034-1041 ◽  
Author(s):  
Lucy M. Palmer ◽  
Allen F. Mensinger

Inductive neural telemetry was used to record from microwire electrodes chronically implanted into the anterior lateral line nerve of the toadfish, Opsanus tau. Spontaneous neural activity and the response of lateral line fibers to water current were continually monitored from 17 primary afferent fibers before, during, and after the administration of the anesthetic tricaine (MS-222). Significant decrease in spontaneous and evoked activity and increase in interspike interval was noted when anesthetic concentrations were ≥0.010%. Neural activity returned to control levels within ∼90 min of anesthetic withdrawal. Decreasing the pH of the solution without the anesthetic caused transient heightened sensitivity, indicating that tricaine and not the concurrent drop in pH was responsible for the decrease in sensitivity during anesthesia. During a secondary challenge with the anesthetic 24 h after the first, fibers initially showed faster recovery however overall recovery kinetics were similar. Although high tricaine concentration was correlated with decreased neural sensitivity, the concentrations normally used to maintain anesthesia in the toadfish did not have significant effect on the evoked firing rate. Thus given sufficient time to recover from the induction of surgical anesthesia, it may be possible to maintain the animal under light anesthesia while minimizing the physiological effects of tricaine.


2021 ◽  
Vol 662 ◽  
pp. 115-124
Author(s):  
AG Mackiewicz ◽  
RL Putland ◽  
AF Mensinger

In coastal waters, anthropogenic activity and its associated sound have been shown to negatively impact aquatic taxa that rely on sound signaling and reception for navigation, prey location, and intraspecific communication. The oyster toadfish Opsanus tau depends on acoustic communication for reproductive success, as males produce ‘boatwhistle’ calls to attract females to their nesting sites. However, it is unknown if in situ vessel sound impacts intraspecific communication in this species. Passive acoustic monitoring using a 4-hydrophone linear array was conducted in Eel Pond, a small harbor in Woods Hole, MA, USA, to monitor the calling behavior of male toadfish. The number of calls pre- and post-exposure to vessel sound was compared. Individual toadfish were localized, and their approximate sound level exposure was predicted using sound mapping. Following exposure to vessel sound, the number of calls significantly decreased compared to the number of calls pre-exposure, with vessel sound overlapping the frequency range of male toadfish boatwhistles. This study provides support that anthropogenic sound can negatively affect intraspecific communication and suggests that in situ vessel sound has the ability to mask boatwhistles and change the calling behavior of male toadfish. Masking could lead to a reduction in intraspecific communication and lower reproductive efficiency within the Eel Pond toadfish population.


2016 ◽  
Author(s):  
Cecilia S. Krahforst ◽  
Mark W. Sprague ◽  
Joseph J. Luczkovich

1998 ◽  
Vol 195 (2) ◽  
pp. 229-231 ◽  
Author(s):  
R. Smolowitz ◽  
E. Wadman ◽  
H. M. Chikarmane

1992 ◽  
Vol 319 (4) ◽  
pp. 501-518 ◽  
Author(s):  
Stephen M. Highstein ◽  
Rusty Kitch ◽  
John Carey ◽  
Robert Baker
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document