spontaneous neural activity
Recently Published Documents


TOTAL DOCUMENTS

110
(FIVE YEARS 46)

H-INDEX

22
(FIVE YEARS 5)

2021 ◽  
Author(s):  
Lei Ding ◽  
Guofa Shou ◽  
Yoon-Hee Cha ◽  
John A. Sweeney ◽  
Han Yuan

AbstractSpontaneous neural activity in human as assessed with resting-state functional magnetic resonance imaging (fMRI) exhibits brain-wide coordinated patterns in the frequency of <0.1Hz. However, fast brain-wide networks at the timescales of neuronal events (milliseconds to sub-seconds) and their spatial, spectral, and propagational characteristics remain unclear due to the temporal constraints of hemodynamic signals. With milli-second resolution and whole-head coverage, scalp-based electroencephalography (EEG) provides a unique window into brain-wide networks with neuronal-timescale dynamics, shedding light on the organizing principles of brain function. Using state-of-the-art signal processing techniques, we reconstructed cortical neural tomography from resting-state EEG and extracted component-based co-activation patterns (cCAPs). These cCAPs revealed brain-wide intrinsic networks and their dynamics, indicating the configuration/reconfiguration of resting human brains into recurring and propagating functional states, which are featured with the prominent spatial phenomena of global patterns and anti-state pairs of co-(de)activations. Rich oscillational structures across a wide frequency band (i.e., 0.6Hz, 5Hz, and 10Hz) were embedded in the dynamics of these functional states. We further identified a superstructure that regulated between-state propagations and governed a significant aspect of brain-wide network dynamics. These findings demonstrated how resting-state EEG data can be functionally decomposed using cCAPs to reveal rich structures of brain-wide human neural activations.


2021 ◽  
Vol 15 ◽  
Author(s):  
Qi-Qi Shen ◽  
Heng-Chan Yin ◽  
Lei Cui ◽  
Jing-Yi Zhang ◽  
Dong-Ling Wang ◽  
...  

Tai Chi Chuan (TCC) is assumed to exert beneficial effects on functional brain activity and cognitive function in elders. Until now, empirical evidence of TCC induced intra-regional spontaneous neural activity and inhibitory control remains inconclusive. Whether the effect of TCC is better than that of other aerobic exercises is still unknown, and the role of TCC in younger adults is not yet fully understood. Here we used resting-state functional MRI (fMRI) to investigate the effects of 8-week TCC (n = 12) and brisk walking (BW, n = 12) on inhibitory control and fractional amplitude of low-frequency fluctuations (fALFF). The results found that TCC had significant effects on inhibitory control performance and spontaneous neural activity that were associated with significantly increased fALFF in the left medial superior frontal gyrus (Cohen’s d = 1.533) and the right fusiform gyrus (Cohen’s d = 1.436) and decreased fALFF in the right dorsolateral superior frontal gyrus (Cohen’s d = 1.405) and the right paracentral lobule (Cohen’s d = 1.132).TCC exhibited stronger effects on spontaneous neural activity than the BW condition, as reflected in significantly increased fALFF in the left medial superior frontal gyrus (Cohen’s d = 0.862). There was a significant positive correlation between the increase in fALFF in the left medial superior frontal gyrus and the enhancement in inhibitory control performance. The change in fALFF in the left medial superior frontal gyrus was able to explain the change in inhibitory control performance induced by TCC. In conclusion, our results indicated that 8 weeks of TCC intervention could improve processing efficiency related to inhibitory control and alter spontaneous neural activity in young adults, and TCC had potential advantages over BW intervention for optimizing spontaneous neural activity.


2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Shuxian Zhang ◽  
Huayun Li ◽  
Qinyan Xu ◽  
Chao Wang ◽  
Xue Li ◽  
...  

Abstract Objectives In this study, we aimed to investigate the spontaneous neural activity in the conventional frequency band (0.01−0.08 Hz) and two sub-frequency bands (slow-4: 0.027–0.073 Hz, and slow-5: 0.01–0.027 Hz) in tension-type headache (TTH) patients with regional homogeneity (ReHo) analyses. Methods Thirty-eight TTH patients and thirty-eight healthy controls (HCs) underwent resting-state functional magnetic resonance imaging (RS-fMRI) scanning to investigate abnormal spontaneous neural activity using ReHo analysis in conventional frequency band (0.01−0.08 Hz) and two sub-frequency bands (slow-4: 0.027–0.073 Hz and slow-5: 0.01–0.027 Hz). Results In comparison with the HC group, patients with TTH exhibited ReHo increases in the right medial superior frontal gyrus in the conventional frequency band (0.01−0.08 Hz). The between group differences in the slow-5 band (0.01–0.027 Hz) highly resembled the differences in the conventional frequency band (0.01−0.08 Hz); even the voxels with increased ReHo were spatially more extensive, including the right medial superior frontal gyrus and the middle frontal gyrus. In contrast, no region showed significant between-group differences in the slow-4 band (0.027–0.073 Hz). The correlation analyses showed no correlation between the ReHo values in TTH patients and VAS scores, course of disease and number of seizures per month in conventional band (0.01−0.08 Hz), slow-4 band (0.027–0.073 Hz), as well as in slow-5 band (0.01–0.027 Hz). Conclusions The results showed that the superior frontal gyrus and middle frontal gyrus were involved in the integration and processing of pain signals. In addition, the abnormal spontaneous neural activity in TTH patients was frequency-specific. Namely, slow-5 band (0.01–0.027 Hz) might contain additional useful information in comparison to slow-4 band (0.027−0.073 Hz). This preliminary exploration might provide an objective imaging basis for the understanding of the pathophysiological mechanism of TTH.


PLoS ONE ◽  
2021 ◽  
Vol 16 (8) ◽  
pp. e0256791
Author(s):  
Daichi Konno ◽  
Shinji Nishimoto ◽  
Takafumi Suzuki ◽  
Yuji Ikegaya ◽  
Nobuyoshi Matsumoto

The brain continuously produces internal activity in the absence of afferently salient sensory input. Spontaneous neural activity is intrinsically defined by circuit structures and associated with the mode of information processing and behavioral responses. However, the spatiotemporal dynamics of spontaneous activity in the visual cortices of behaving animals remain almost elusive. Using a custom-made electrode array, we recorded 32-site electrocorticograms in the primary and secondary visual cortex of freely behaving rats and determined the propagation patterns of spontaneous neural activity. Nonlinear dimensionality reduction and unsupervised clustering revealed multiple discrete states of the activity patterns. The activity remained stable in one state and suddenly jumped to another state. The diversity and dynamics of the internally switching cortical states would imply flexibility of neural responses to various external inputs.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Martin Pastrnak ◽  
Eva Simkova ◽  
Tomas Novak

AbstractSymptomatic overlap of depressive episodes in bipolar disorder (BD) and major depressive disorder (MDD) is a major diagnostic and therapeutic problem. Mania in medical history remains the only reliable distinguishing marker which is problematic given that episodes of depression compared to episodes of mania are more frequent and predominantly present at the beginning of BD. Resting-state functional magnetic resonance imaging (rs-fMRI) is a non-invasive, task-free, and well-tolerated method that may provide diagnostic markers acquired from spontaneous neural activity. Previous rs-fMRI studies focused on differentiating BD from MDD depression were inconsistent in their findings due to low sample power, heterogeneity of compared samples, and diversity of analytical methods. This meta-analysis investigated resting-state activity differences in BD and MDD depression using activation likelihood estimation. PubMed, Web of Science, Scopus and Google Scholar databases were searched for whole-brain rs-fMRI studies which compared MDD and BD currently depressed patients between Jan 2000 and August 2020. Ten studies were included, representing 234 BD and 296 MDD patients. The meta-analysis found increased activity in the left insula and adjacent area in MDD compared to BD. The finding suggests that the insula is involved in neural activity patterns during resting-state that can be potentially used as a biomarker differentiating both disorders.


2021 ◽  
Vol 13 ◽  
Author(s):  
Fuxin Ren ◽  
Wen Ma ◽  
Wei Zong ◽  
Ning Li ◽  
Xiao Li ◽  
...  

Presbycusis (PC) is characterized by preferential hearing loss at high frequencies and difficulty in speech recognition in noisy environments. Previous studies have linked PC to cognitive impairment, accelerated cognitive decline and incident Alzheimer’s disease. However, the neural mechanisms of cognitive impairment in patients with PC remain unclear. Although resting-state functional magnetic resonance imaging (rs-fMRI) studies have explored low-frequency oscillation (LFO) connectivity or amplitude of PC-related neural activity, it remains unclear whether the abnormalities occur within all frequency bands or within specific frequency bands. Fifty-one PC patients and fifty-one well-matched normal hearing controls participated in this study. The LFO amplitudes were investigated using the amplitude of low-frequency fluctuation (ALFF) at different frequency bands (slow-4 and slow-5). PC patients showed abnormal LFO amplitudes in the Heschl’s gyrus, dorsolateral prefrontal cortex (dlPFC), frontal eye field and key nodes of the speech network exclusively in slow-4, which suggested that abnormal spontaneous neural activity in PC was frequency dependent. Our findings also revealed that stronger functional connectivity between the dlPFC and the posterodorsal stream of auditory processing, as well as lower functional coupling between the PCC and key nodes of the DMN, which were associated with cognitive impairments in PC patients. Our study might underlie the cross-modal plasticity and higher-order cognitive participation of the auditory cortex after partial hearing deprivation. Our findings indicate that frequency-specific analysis of ALFF could provide valuable insights into functional alterations in the auditory cortex and non-auditory regions involved in cognitive impairment associated with PC.


NeuroImage ◽  
2021 ◽  
pp. 118419
Author(s):  
Yashar Zeighami ◽  
Sylvain Iceta ◽  
Mahsa Dadar ◽  
Mélissa Pelletier ◽  
Mélanie Nadeau ◽  
...  

2021 ◽  
Vol 13 ◽  
Author(s):  
Jieke Liu ◽  
Yong Li ◽  
Xi Yang ◽  
Hao Xu ◽  
Jing Ren ◽  
...  

Objective: Resting-state functional magnetic resonance imaging (rs-fMRI) studies have revealed inconsistent regional spontaneous neural activity alterations in patients with type 2 diabetes mellitus (T2DM). The aim of our meta-analysis was to identify concordant regional spontaneous neural activity abnormalities in patients with T2DM.Methods: A systematic search was conducted to identify voxel-based rs-fMRI studies comparing T2DM patients with healthy controls. The permutation of subject images seed-based d mapping (SDM) was used to quantitatively estimate the regional spontaneous neural activity abnormalities in patients with T2DM. Metaregression was conducted to examine the associations between clinical characteristics and functional alterations.Results: A total of 16 studies with 19 datasets including 434 patients with T2DM and 391 healthy controls were included. Patients with T2DM showed hypoactivity in the right medial superior frontal gyrus, right superior temporal gyrus, and left lingual gyrus, whereas hyperactivity in the right cerebellum. Metaregression analysis identified negative correlation between regional activity in the medial superior frontal and anterior cingulate gyri and illness duration of patients with T2DM.Conclusion: The patterns of regional spontaneous neural activity alterations, characterized by hypoactivity in the medial pre-frontal cortex, visual cortex, and superior temporal gyrus, whereas hyperactivity in the cerebellum, might represent the underlying neuropathological mechanisms of T2DM.


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Soren Wainio-Theberge ◽  
Annemarie Wolff ◽  
Georg Northoff

AbstractSpontaneous neural activity fluctuations have been shown to influence trial-by-trial variation in perceptual, cognitive, and behavioral outcomes. However, the complex electrophysiological mechanisms by which these fluctuations shape stimulus-evoked neural activity remain largely to be explored. Employing a large-scale magnetoencephalographic dataset and an electroencephalographic replication dataset, we investigate the relationship between spontaneous and evoked neural activity across a range of electrophysiological variables. We observe that for high-frequency activity, high pre-stimulus amplitudes lead to greater evoked desynchronization, while for low frequencies, high pre-stimulus amplitudes induce larger degrees of event-related synchronization. We further decompose electrophysiological power into oscillatory and scale-free components, demonstrating different patterns of spontaneous-evoked correlation for each component. Finally, we find correlations between spontaneous and evoked time-domain electrophysiological signals. Overall, we demonstrate that the dynamics of multiple electrophysiological variables exhibit distinct relationships between their spontaneous and evoked activity, a result which carries implications for experimental design and analysis in non-invasive electrophysiology.


2021 ◽  
Vol 15 ◽  
Author(s):  
Wen Chen ◽  
Qian Wu ◽  
Lu Chen ◽  
Jiang Zhou ◽  
Huan-Huan Chen ◽  
...  

PurposeThe purpose of the study was to investigate the brain functional alteration in patients with thyroid-associated ophthalmopathy (TAO) by evaluating the spontaneous neural activity changes using resting-state functional magnetic resonance imaging (rs-fMRI) with the amplitude of low-frequency fluctuation (ALFF) method.Materials and MethodsThe rs-fMRI data of 30 TAO patients (15 active and 15 inactive) and 15 healthy controls (HCs) were included for analyses. The ALFF values were calculated and compared among groups. Correlations between ALFF values and clinical metrics were assessed.ResultsCompared with HCs, active TAOs showed significantly decreased ALFF values in the left middle occipital gyrus, superior occipital gyrus, and cuneus. Compared with inactive TAOs, active TAOs showed significantly increased ALFF values in the bilateral precuneus. Additionally, inactive TAOs showed significantly decreased ALFF values in the left middle occipital gyrus, superior occipital gyrus, cuneus, and bilateral precuneus than HCs. The ALFF value in the right precuneus of TAOs was positively correlated with clinical activity score (r = 0.583, P &lt; 0.001) and Mini-Mental State Examination (MMSE) score (r = 0.377, P = 0.040), and negatively correlated with disease duration (r = −0.382, P = 0.037). Moreover, the ALFF value in the left middle occipital gyrus of TAOs was positively correlated with visual acuity (r = 0.441, P = 0.015).ConclusionTAO patients had altered spontaneous brain activities in the left occipital lobe and bilateral precuneus. The neuropsychological aspect of the disease should be noticed during clinical diagnosis and treatment.


Sign in / Sign up

Export Citation Format

Share Document