Gold Rush Sojourners in Great Salt Lake City, 1849 and 1850

1984 ◽  
Vol 89 (5) ◽  
pp. 1393
Author(s):  
James B. Allen ◽  
Brigham D. Madsen
1985 ◽  
Vol 16 (1) ◽  
pp. 96 ◽  
Author(s):  
Gene A. Sessions ◽  
Brigham D. Madsen

1985 ◽  
Vol 71 (4) ◽  
pp. 866
Author(s):  
John mack Faragher ◽  
Brigham D. Madsen

Author(s):  
Emily J. Kleber ◽  
Adam P. McKean ◽  
Adam I. Hiscock ◽  
Michael D. Hylland ◽  
Christian L. Hardwick ◽  
...  

Abstract The 18 March 2020 Mw 5.7 Magna, Utah, earthquake was the largest earthquake in Utah since the 1992 ML 5.8 St. George earthquake. The geologic setting of the Magna earthquake is well documented by recent geologic mapping at 1:24,000 scale and 1:62,500 scale at and near the epicenter northeast of Magna, Utah. Subsurface fault modeling from surficial geologic mapping, structural cross sections, deep borehole data, and geophysical data reveals a complex system of faulting concentrated in the hanging wall of the Weber and Salt Lake City segments of the Wasatch fault zone including the Harkers fault, the West Valley fault zone, and the newly interpreted Saltair graben. Based on geologic and geophysical data (seismic and gravity), we interpret the mainshock of the Magna earthquake as having occurred on a relatively gently dipping part of the Salt Lake City segment, with aftershocks concentrated in the Saltair graben and West Valley fault zone. Postearthquake rapid reconnaissance of geological effects of the Magna earthquake documented liquefaction near the earthquake epicenter, along the Jordan River, and along the Great Salt Lake shoreline. Subaerial and subaqueous sand boils were identified in regions with roadway infrastructure and artificial fill, whereas collapse features were noted along the shores of the Great Salt Lake. Potential syneresis cracking and pooling in large areas indicated fluctuating groundwater likely related to earthquake ground shaking. The moderate magnitude of the Magna earthquake and minimal geological effects highlight the critical importance of earthquake research from multidisciplinary fields in the geosciences and preparedness on the Wasatch Front.


2021 ◽  
pp. 71-94
Author(s):  
Charles G. (Jack) Oviatt ◽  
Genevieve Atwood ◽  
Benjamin J.C. Laabs ◽  
Paul W. Jewell ◽  
Harry M. Jol

ABSTRACT On this field trip we visit three sites in the Salt Lake Valley, Utah, USA, where we examine the geomorphology of the Bonneville shoreline, the history of glaciation in the Wasatch Range, and shorezone geomorphology of Great Salt Lake. Stop 1 is at Steep Mountain bench, adjacent to Point of the Mountain in the Traverse Mountains, where the Bonneville shoreline is well developed and we can examine geomorphic evidence for the behavior of Lake Bonneville at its highest levels. At Stop 2 at the mouths of Little Cottonwood and Bells Canyons in the Wasatch Range, we examine geochronologic and geomorphic evidence for the interaction of mountain glaciers with Lake Bonneville. At the Great Salt Lake at Stop 3, we can examine modern processes and evidence of the Holocene history of the lake, and appreciate how Lake Bonneville and Great Salt Lake are two end members of a long-lived lacustrine system in one of the tectonically generated basins of the Great Basin.


2013 ◽  
Vol 95 (4) ◽  
pp. 368-379
Author(s):  
Peter J. Blodgett

Walter Van Dyke, a young lawyer, headed overland to the California gold rush in 1849 with a large party that started late, traveled through Salt Lake City and over the Old Spanish Trail, and finally arrived in Los Angeles after an eight-month odyssey. He gives his first-hand impressions of the limited opportunities Los Angeles offered in 1850 and credits California’s progress four decades later to American settlers like himself.


1991 ◽  
Vol 119 (12) ◽  
pp. 2741-2770 ◽  
Author(s):  
Joanne Simpson ◽  
G. Roff ◽  
B. R. Morton ◽  
K. Labas ◽  
G. Dietachmayer ◽  
...  

Abstract A waterspout funnel and spray ring were observed under a cumulus line over the Great Salt Lake for about 5 min shortly after sunrise on 26 June 1985. Videotaped features strongly suggested that the funnel rotation was anticyclonic, These observations have been used as the basis for a study of the initiation and evolution of waterspouts through a series of numerical experiments at two scales, that of a cloud and a waterspout. The cloud scale has been simulated using an improved Goddard-Schlesinger model with nearby Salt Lake City soundings. The main model improvements have been 1) a parameterized, three-class ice phase and 2) a line initialization in addition to the more common axisymmetric buoyant bubble. Cloud-scale vortex pairs developed for each mode of initiation, but a much stronger, more upright, low-level anticyclonic vortex grew from the line initiation than from the bubble. However, cumulus-scale vortices are common while waterspouts are rare, and the real test of a model is whether a waterspout can develop in the limited cumulus lifetime. The 600-m horizontal grid of the cloud model cannot resolve waterspouts, and a modified Monash high-resolution axisymmetric vortex model with vertical domain and small section has been “embedded” at selected positions and initiated at selected times in the computed flow field of the cloud. Many experiments have been carried out with the vortex model. In the most important series, the boundary conditions were changed with the fields of the model cumulus as it evolved, and the time at which the vortex was started was varied through the lifetime of the parent cloud. Results showed that for each mode of cloud initiation, the vortex that started at the anticyclonic center grew faster than those started at other centers. This result fits with the observed anticyclonic rotation of the waterspout, strongly suggesting that the cloud vorticity was important in its initiation. The greatest azimuthal speed for the bubble-initiated cloud was 11 ms−1 when the vortex model was started at 28 min cloud time with time-varying boundary conditions, whereas it was 21 m s−1 when started at 12 min in the line-initiated cloud. Speeds were comparable when the inner domain moved with the anticyclonic cloud center. These speeds are close to the spray-ring threshold azimuthal velocity of roughly 22 m s−1 estimated by Golden from photographs. Together, these model results support the hypothesis that, at least in some circumstances, cloud processes alone can produce waterspouts in the absence of external vorticity sources such as surface convergence lines or other shear features.


Sign in / Sign up

Export Citation Format

Share Document