Tracial Positive Linear Maps of C ∗ -Algebras

1983 ◽  
Vol 87 (1) ◽  
pp. 57
Author(s):  
Man-Duen Choi ◽  
Sze-Kai Tsui
1972 ◽  
Vol 24 (3) ◽  
pp. 520-529 ◽  
Author(s):  
Man-Duen Choi

The objective of this paper is to give some concrete distinctions between positive linear maps and completely positive linear maps on C*-algebras of operators.Herein, C*-algebras possess an identity and are written in German type . Capital letters A, B, C stand for operators, script letters for vector spaces, small letters x, y, z for vectors. Capital Greek letters Φ, Ψ stand for linear maps on C*-algebras, small Greek letters α, β, γ for complex numbers.We denote by the collection of all n × n complex matrices. () = ⊗ is the C*-algebra of n × n matrices over .


2005 ◽  
Vol 48 (3) ◽  
pp. 673-690
Author(s):  
Huaxin Lin

AbstractWe introduce the notion of tracial equivalence for $C^*$-algebras. Let $A$ and $B$ be two unital separable $C^*$-algebras. If they are tracially equivalent, then there are two sequences of asymptotically multiplicative contractive completely positive linear maps $\phi_n:A\to B$ and $\psi_n:B\to A$ with a tracial condition such that $\{\phi_n\circ\psi_n\}$ and $\{\psi_n\circ\phi_n\}$ are tracially approximately inner. Let $A$ and $B$ be two unital separable simple $C^*$-algebras with tracial topological rank zero. It is proved that $A$ and $B$ are tracially equivalent if and only if $A$ and $B$ have order isomorphic ranges of tracial states. For the Cantor minimal systems $(X_1,\sigma_1)$ and $(X_2,\sigma_2)$, using a result of Giordano, Putnam and Skau, we show that two such dynamical systems are (topological) orbit equivalent if and only if the associated crossed products $C(X_1)\times_{\sigma_1}\mathbb{Z}$ and $C(X_2)\times_{\sigma_2}\mathbb{Z}$ are tracially equivalent.


2009 ◽  
Vol 44 (1) ◽  
pp. 187-193
Author(s):  
Maria Joita ◽  
Tania-Luminita Costache ◽  
Mariana Zamfir

2020 ◽  
Vol 18 (05) ◽  
pp. 2050019
Author(s):  
B. V. Rajarama Bhat ◽  
Hiroyuki Osaka

The purpose of this short paper is to clarify and present a general version of an interesting observation by [Piani and Mora, Phys. Rev. A 75 (2007) 012305], linking complete positivity of linear maps on matrix algebras to decomposability of their ampliations. Let [Formula: see text], [Formula: see text] be unital C*-algebras and let [Formula: see text] be positive linear maps from [Formula: see text] to [Formula: see text] [Formula: see text]. We obtain conditions under which any positive map [Formula: see text] from the minimal C*-tensor product [Formula: see text] to [Formula: see text], such that [Formula: see text], factorizes as [Formula: see text] for some positive map [Formula: see text]. In particular, we show that when [Formula: see text] are completely positive (CP) maps for some Hilbert spaces [Formula: see text] [Formula: see text], and [Formula: see text] is a pure CP map and [Formula: see text] is a CP map so that [Formula: see text] is also CP, then [Formula: see text] for some CP map [Formula: see text]. We show that a similar result holds in the context of positive linear maps when [Formula: see text] and [Formula: see text]. As an application, we extend IX Theorem of Ref. 4 (revisited recently by [Huber et al., Phys. Rev. Lett. 121 (2018) 200503]) to show that for any linear map [Formula: see text] from a unital C*-algebra [Formula: see text] to a C*-algebra [Formula: see text], if [Formula: see text] is decomposable for some [Formula: see text], where [Formula: see text] is the identity map on the algebra [Formula: see text] of [Formula: see text] matrices, then [Formula: see text] is CP.


Sign in / Sign up

Export Citation Format

Share Document