complex matrices
Recently Published Documents


TOTAL DOCUMENTS

663
(FIVE YEARS 132)

H-INDEX

44
(FIVE YEARS 9)

RSC Advances ◽  
2022 ◽  
Vol 12 (2) ◽  
pp. 1077-1083
Author(s):  
Muzammil M. N. Ahmed ◽  
Faieza S. Bodowara ◽  
Wendy Zhou ◽  
Juliana F. Penteado ◽  
Jessica L. Smeltz ◽  
...  

A nanopipet electrochemical sensor was successfully utilized to detect free Cd(ll) ions in complicated matrices and real environmental water samples.


Molecules ◽  
2021 ◽  
Vol 26 (23) ◽  
pp. 7185
Author(s):  
Oliver Gould ◽  
Natalia Drabińska ◽  
Norman Ratcliffe ◽  
Ben de Lacy Costello

Mass spectrometry (MS) is an analytical technique that can be used for various applications in a number of scientific areas including environmental, security, forensic science, space exploration, agri-food, and numerous others. MS is also continuing to offer new insights into the proteomic and metabolomic fields. MS techniques are frequently used for the analysis of volatile compounds (VCs). The detection of VCs from human samples has the potential to aid in the diagnosis of diseases, in monitoring drug metabolites, and in providing insight into metabolic processes. The broad usage of MS has resulted in numerous variations of the technique being developed over the years, which can be divided into hyphenated and real-time MS techniques. Hyphenated chromatographic techniques coupled with MS offer unparalleled qualitative analysis and high accuracy and sensitivity, even when analysing complex matrices (breath, urine, stool, etc.). However, these benefits are traded for a significantly longer analysis time and a greater need for sample preparation and method development. On the other hand, real-time MS techniques offer highly sensitive quantitative data. Additionally, real-time techniques can provide results in a matter of minutes or even seconds, without altering the sample in any way. However, real-time MS can only offer tentative qualitative data and suffers from molecular weight overlap in complex matrices. This review compares hyphenated and real-time MS methods and provides examples of applications for each technique for the detection of VCs from humans.


Metabolites ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 789
Author(s):  
Yuzhu Guo ◽  
Michael Forbush ◽  
Thomas R. Covey ◽  
Lucien Ghislain ◽  
Chang Liu

Acoustic ejection mass spectrometry is a novel high-throughput analytical technology that delivers high reproducibility without carryover observed. It eliminates the chromatography step used to separate analytes from matrix components. Fully-automated liquid–liquid extraction is widely used for sample cleanup, especially in high-throughput applications. We introduce a workflow for direct AEMS analysis from phase-separated liquid samples and explore high-throughput analysis from complex matrices. We demonstrate the quantitative determination of fentanyl from urine using this two-phase AEMS approach, with a LOD lower than 1 ng/mL, quantitation precision of 15%, and accuracy better than ±10% over the range of evaluation (1–100 ng/mL). This workflow offers simplified sample preparation and higher analytical throughput for some bioanalytical applications, in comparison to an LC-MS based approach.


2021 ◽  
Vol 8 (32) ◽  
pp. 999-1023
Author(s):  
Douglas Farenick

A recent paper of A. Connes and W.D. van Suijlekom [Comm. Math. Phys. 383 (2021), pp. 2021–2067] identifies the operator system of n × n n\times n Toeplitz matrices with the dual of the space of all trigonometric polynomials of degree less than n n . The present paper examines this identification in somewhat more detail by showing explicitly that the Connes–van Suijlekom isomorphism is a unital complete order isomorphism of operator systems. Applications include two special results in matrix analysis: (i) that every positive linear map of the n × n n\times n complex matrices is completely positive when restricted to the operator subsystem of Toeplitz matrices and (ii) that every linear unital isometry of the n × n n\times n Toeplitz matrices into the algebra of all n × n n\times n complex matrices is a unitary similarity transformation. An operator systems approach to Toeplitz matrices yields new insights into the positivity of block Toeplitz matrices, which are viewed herein as elements of tensor product spaces of an arbitrary operator system with the operator system of n × n n\times n complex Toeplitz matrices. In particular, it is shown that min and max positivity are distinct if the blocks themselves are Toeplitz matrices, and that the maximally entangled Toeplitz matrix ξ n \xi _n generates an extremal ray in the cone of all continuous n × n n\times n Toeplitz-matrix valued functions f f on the unit circle S 1 S^1 whose Fourier coefficients f ^ ( k ) \hat f(k) vanish for | k | ≥ n |k|\geq n . Lastly, it is noted that all positive Toeplitz matrices over nuclear C ∗ ^* -algebras are approximately separable.


2021 ◽  
pp. 118603
Author(s):  
Pia Ramos ◽  
Shashank Singh Kalra ◽  
Nicholas W. Johnson ◽  
Chia Miang Khor ◽  
Annesh Borthakur ◽  
...  

Pollutants ◽  
2021 ◽  
Vol 1 (4) ◽  
pp. 194-206
Author(s):  
Justus Hardegen ◽  
Patrick Braeutigam ◽  
Christian Abendroth ◽  
Thomas Wichard

The endocrine disruptor bisphenol A (BPA) is one of the most commonly found micropollutants in the environment. However, the biodegradation of BPA under anaerobic (methanogenic) conditions is still an understudied process in wastewater treatment systems. The current study thus addresses the need for a simple and user-friendly analytical method for the rapid and accurate quantification of BPA in complex matrices such as digested and co-digester sludges. We established a microwave-assisted extraction method, followed by derivatization and gas chromatography–mass spectrometry to quantify BPA by comparing it with a deuterated internal standard. The BPA removal capabilities of three digester sludges and three co-digester sludges were examined under mesophilic methanogenic conditions in biogas plants. The endogenous BPA concentration (dry weight) ranged from 1596 to 10,973 µg kg−1 in digested sewage sludges, and from below the limit of quantification to 9069 µg kg−1 in co-digester sludges. When BPA was added to the sludges, the removal capabilities ranged from not significant to 50% after 21 days of incubation. Biogas production was unaffected by the addition of BPA (228 µg kg−1) to the aqueous sludge. The study demonstrated that BPA could be removed under anaerobic conditions in accustomed inoculates. The findings have far-reaching implications for understanding BPA persistence and detoxification under anaerobic conditions.


Sign in / Sign up

Export Citation Format

Share Document