Existence of classes and value specification of variables

1950 ◽  
Vol 15 (2) ◽  
pp. 103-112 ◽  
Author(s):  
Hao Wang

In mathematics, when we want to introduce classes which fulfill certain conditions, we usually prove beforehand that classes fulfilling such conditions do exist, and that such classes are uniquely determined by the conditions. The statements which state such unicity and existence of classes are in mathematical logic consequences of the principles of extensionality and class existence. In order to illustrate how these principles enable us to introduce classes into systems of mathematical logic, let us consider the manner in which Gödel introduces classes in his book on set theory.For instance, before introducing the definition of the non-ordered pair of two classesGödel puts down as its justification the following two axioms:By A4, for every two classesyandzthere exists at least one non-ordered pairwof them; and by A3,wis uniquely determined in A4.


1967 ◽  
Vol 32 (3) ◽  
pp. 319-321 ◽  
Author(s):  
Leslie H. Tharp

We are concerned here with the set theory given in [1], which we call BL (Bernays-Levy). This theory can be given an elegant syntactical presentation which allows most of the usual axioms to be deduced from the reflection principle. However, it is more convenient here to take the usual Von Neumann-Bernays set theory [3] as a starting point, and to regard BL as arising from the addition of the schema where S is the formal definition of satisfaction (with respect to models which are sets) and ┌φ┐ is the Gödel number of φ which has a single free variable X.



2003 ◽  
Vol 9 (3) ◽  
pp. 273-298 ◽  
Author(s):  
Akihiro Kanamori

For the modern set theorist the empty set Ø, the singleton {a}, and the ordered pair 〈x, y〉 are at the beginning of the systematic, axiomatic development of set theory, both as a field of mathematics and as a unifying framework for ongoing mathematics. These notions are the simplest building locks in the abstract, generative conception of sets advanced by the initial axiomatization of Ernst Zermelo [1908a] and are quickly assimilated long before the complexities of Power Set, Replacement, and Choice are broached in the formal elaboration of the ‘set of’f {} operation. So it is surprising that, while these notions are unproblematic today, they were once sources of considerable concern and confusion among leading pioneers of mathematical logic like Frege, Russell, Dedekind, and Peano. In the development of modern mathematical logic out of the turbulence of 19th century logic, the emergence of the empty set, the singleton, and the ordered pair as clear and elementary set-theoretic concepts serves as amotif that reflects and illuminates larger and more significant developments in mathematical logic: the shift from the intensional to the extensional viewpoint, the development of type distinctions, the logical vs. the iterative conception of set, and the emergence of various concepts and principles as distinctively set-theoretic rather than purely logical. Here there is a loose analogy with Tarski's recursive definition of truth for formal languages: The mathematical interest lies mainly in the procedure of recursion and the attendant formal semantics in model theory, whereas the philosophical interest lies mainly in the basis of the recursion, truth and meaning at the level of basic predication. Circling back to the beginning, we shall see how central the empty set, the singleton, and the ordered pair were, after all.



1982 ◽  
Vol 12 (2) ◽  
pp. 353-374 ◽  
Author(s):  
Randall R. Dipert

One of the most significant discoveries of early twentieth century mathematical logic was a workable definition of ‘ordered pair’ totally within set theory. Norbert Wiener, and independently Casimir Kuratowski, are usually credited with this discovery. A definition of ‘ordered pair’ held the key to the precise formulation of the notions of ‘relation’ and ‘function’ — both of which are probably indispensable for an understanding of the foundations of mathematics. The set-theoretic definition of ‘ordered pair’ thus turned out to be a key victory for logicism, providing one admits set theory is logic. The definition also was instrumental in achieving the appearance of ontological economy — since it seemed only sets were needed — although this feature was emphasized only later.



1952 ◽  
Vol 17 (4) ◽  
pp. 225-237 ◽  
Author(s):  
J. C. Shepherdson

In this paper we continue the study of inner models of the type studied inInner models for set theory—Part I.The present paper is concerned exclusively with a particular kind of model, the ‘super-complete models’ defined in section 2.4 of I (page 186). The condition (c) of 2.4 and the completeness condition 1.42 imply that such a model is uniquely determined when its universal class Vmis given. Writing condition (c) and the completeness conditions 1.41, 1.42 in terms of Vm, we may state the definition in the form:3.1. Dfn.A classVmis said to determine a super-complete model if the model whose basic notions are defined by,satisfies axiomsA, B, C.N. B. This definition is not necessarily metamathematical in nature. If desired, it could be written out quite formally as the definition of a notion ‘SCM(U)’ (‘Udetermines a super-complete model’) thus:whereψ(U) is the propositional function expressing in terms ofUthe fact that the model determined byUaccording to 3.1 satisfies the relativization of axioms A, B, C. E.g. corresponding to axiom A1m, i.e.,,ψ(U) contains the equivalent term. All the relativized axioms can be similarly expressed in this way by first writing out the relativized form (after having replaced all defined symbols which occur by the corresponding formulae in primitive notation) and then replacing ‘(Am)ϕ(Am) bywhich is in turn replaced by, and similarly replacing ‘(xm)ϕ(xm)’ by ‘(xm)ϕ(xm)’ by ‘(X)(X ϵ U ▪ ⊃ ▪ ϕ(X)), andThusψ(U) is obtained in primitive notation.



2012 ◽  
Vol 96 (536) ◽  
pp. 213-220
Author(s):  
Harlan J. Brothers

Pascal's triangle is well known for its numerous connections to probability theory [1], combinatorics, Euclidean geometry, fractal geometry, and many number sequences including the Fibonacci series [2,3,4]. It also has a deep connection to the base of natural logarithms, e [5]. This link to e can be used as a springboard for generating a family of related triangles that together create a rich combinatoric object.2. From Pascal to LeibnizIn Brothers [5], the author shows that the growth of Pascal's triangle is related to the limit definition of e.Specifically, we define the sequence sn; as follows [6]:



10.1142/12456 ◽  
2022 ◽  
Author(s):  
Douglas Cenzer ◽  
Jean Larson ◽  
Christopher Porter ◽  
Jindrich Zapletal


1995 ◽  
Vol 77 (1) ◽  
pp. 65-71 ◽  
Author(s):  
Guangxia Cao


1999 ◽  
Vol 9 (5) ◽  
pp. 545-567 ◽  
Author(s):  
LAWRENCE C. PAULSON

A special final coalgebra theorem, in the style of Aczel (1988), is proved within standard Zermelo–Fraenkel set theory. Aczel's Anti-Foundation Axiom is replaced by a variant definition of function that admits non-well-founded constructions. Variant ordered pairs and tuples, of possibly infinite length, are special cases of variant functions. Analogues of Aczel's solution and substitution lemmas are proved in the style of Rutten and Turi (1993). The approach is less general than Aczel's, but the treatment of non-well-founded objects is simple and concrete. The final coalgebra of a functor is its greatest fixedpoint.Compared with previous work (Paulson, 1995a), iterated substitutions and solutions are considered, as well as final coalgebras defined with respect to parameters. The disjoint sum construction is replaced by a smoother treatment of urelements that simplifies many of the derivations.The theory facilitates machine implementation of recursive definitions by letting both inductive and coinductive definitions be represented as fixed points. It has already been applied to the theorem prover Isabelle (Paulson, 1994).



2012 ◽  
Vol 2012 ◽  
pp. 1-20 ◽  
Author(s):  
Shawkat Alkhazaleh ◽  
Abdul Razak Salleh

In 1999 Molodtsov introduced the concept of soft set theory as a general mathematical tool for dealing with uncertainty. Alkhazaleh et al. in 2011 introduced the definition of a soft multiset as a generalization of Molodtsov's soft set. In this paper we give the definition of fuzzy soft multiset as a combination of soft multiset and fuzzy set and study its properties and operations. We give examples for these concepts. Basic properties of the operations are also given. An application of this theory in decision-making problems is shown.



1972 ◽  
Vol 37 (4) ◽  
pp. 703-704
Author(s):  
Donald Perlis

Ackermann's set theory [1], called here A, involves a schemawhere φ is an ∈-formula with free variables among y1, …, yn and w does not appear in φ. Variables are thought of as ranging over classes and V is intended as the class of all sets.S is a kind of comprehension principle, perhaps most simply motivated by the following idea: The familiar paradoxes seem to arise when the class CP of all P-sets is claimed to be a set, while there exists some P-object x not in CP such that x would have to be a set if CP were. Clearly this cannot happen if all P-objects are sets.Now, Levy [2] and Reinhardt [3] showed that A* (A with regularity) is in some sense equivalent to ZF. But the strong replacement axiom of Gödel-Bernays set theory intuitively ought to be a theorem of A* although in fact it is not (Levy's work shows this). Strong replacement can be formulated asThis lack of A* can be remedied by replacing S above bywhere ψ and φ are ∈-formulas and x is not in ψ and w is not in φ. ψv is ψ with quantifiers relativized to V, and y and z stand for y1, …, yn and z1, …, zm.



Sign in / Sign up

Export Citation Format

Share Document