An elementary sentence which has ordered models

1972 ◽  
Vol 37 (3) ◽  
pp. 521-530 ◽  
Author(s):  
James H. Schmerl

Let < and ≼ be two distinguished binary relation symbols. A structure is κ-like iff is a linear ordering of A, card(A) = κ, and every proper initial segment of A has cardinality < κ. A structure is α-ordered iff is a (reflexive) linear ordering of type α with field a subset of A. We define when a cardinal κ is α-inaccessible. (In this paper, inaccessible always means weakly inaccessible.) The 0-inaccessible cardinals are just the inaccessible cardinals; if α > 0, then κ is α-inaccessible iff for each β < α, each closed, cofinal subset of κ contains a β-inaccessible. (The (1 + α)-inaccessibles are just the ρα cardinals of Mahlo.) This paper is concerned with the proof of the following theorem.Main Theorem. There is an elementary sentence σ with the property that whenever α is an ordinal and κ an infinite cardinal, then σ has an α-ordered κ-like model iff κ is not α-inaccessible.This theorem gives some additional answers to a question of Mostowski about languages with generalized quantifiers. Fuhrken [1] showed that this question is equivalent to the following one: For which cardinals κ and λ is it true that if an elementary sentence has a κ-like model, then it has a λ-like model? It is actually this question to which the theorem refers. The theorem limits the possible pairs κ, λ of cardinals which answer the question. In fact, if the question is generalized so as to permit sentences from some more extensive language, then the theorem still limits the possible answers. For a more thorough introduction to this problem, the reader is referred to the aforementioned article of Fuhrken as well as Keisler [2] and Vaught [6].


2007 ◽  
Vol 72 (3) ◽  
pp. 1003-1018 ◽  
Author(s):  
John Chisholm ◽  
Jennifer Chubb ◽  
Valentina S. Harizanov ◽  
Denis R. Hirschfeldt ◽  
Carl G. Jockusch ◽  
...  

AbstractWe study the weak truth-table and truth-table degrees of the images of subsets of computable structures under isomorphisms between computable structures. In particular, we show that there is a low c.e. set that is not weak truth-table reducible to any initial segment of any scattered computable linear ordering. Countable subsets of 2ω and Kolmogorov complexity play a major role in the proof.



2015 ◽  
Vol 15 (02) ◽  
pp. 1550007 ◽  
Author(s):  
James Cummings ◽  
Sy David Friedman ◽  
Mohammad Golshani

Assuming that GCH holds and [Formula: see text] is [Formula: see text]-supercompact, we construct a generic extension [Formula: see text] of [Formula: see text] in which [Formula: see text] remains strongly inaccessible and [Formula: see text] for every infinite cardinal [Formula: see text]. In particular the rank-initial segment [Formula: see text] is a model of ZFC in which [Formula: see text] for every infinite cardinal [Formula: see text].



1990 ◽  
Vol 55 (1) ◽  
pp. 65-73 ◽  
Author(s):  
Juha Oikkonen

AbstractC. Karp has shown that if α is an ordinal with ωα = α and A is a linear ordering with a smallest element, then α and α ⊗ A are equivalent in L∞ω up to quantifer rank α. This result can be expressed in terms of Ehrenfeucht-Fraïssé games where player ∀ has to make additional moves by choosing elements of a descending sequence in α. Our aim in this paper is to prove a similar result for Ehrenfeucht-Fraïssé games of length ω1. One implication of such a result will be that a certain infinite quantifier language cannot say that a linear ordering has no descending ω1-sequences (when the alphabet contains only one binary relation symbol). Connected work is done by Hyttinen and Oikkonen in [H] and [O].



10.37236/1920 ◽  
2005 ◽  
Vol 12 (1) ◽  
Author(s):  
Andreas Blass ◽  
Gábor Braun

We prove a conjecture of Droste and Kuske about the probability that $1$ is minimal in a certain random linear ordering of the set of natural numbers. We also prove generalizations, in two directions, of this conjecture: when we use a biased coin in the random process and when we begin the random process with a specified ordering of a finite initial segment of the natural numbers. Our proofs use a connection between the conjecture and a question about the game of gambler's ruin. We exhibit several different approaches (combinatorial, probabilistic, generating function) to the problem, of course ultimately producing equivalent results.



1974 ◽  
Vol 39 (4) ◽  
pp. 732-740 ◽  
Author(s):  
James H. Schmerl

In this paper we define by means of a partition property a decreasing sequence N = ‹Nα: α is an ordinal› of classes of ordinals. This property is a generalization of the nonexistence of special Aronszajn trees: the successor cardinal κ+ is in N0 iff there does not exist a special Aronszajn κ+-tree.The interest in the classes Nα stems from their applicability in model theory, in particular to that aspect of model theory dealing with ordered and two-cardinal models. A model is κ-like iff < is a linear ordering of A of cardinality κ but such that every proper initial segment has cardinality < κ. is α-ordered iff ≼ is a reflexive, linear ordering of some subset of A with order type α. The sequence N can be characterized by a first-order sentence σ in the following manner: The sentence σ has a κ-like α-ordered model iff κ ∉ Nα. This characterization will allow us to translate various independence statements regarding the sequence N to statements about the independence of transfer properties. We say that the transfer property κ → λ holds iff every first-order sentence which has a κ-like model also has a λ-like model. κ ⇸ λ is the negation of κ → λ.



1996 ◽  
Vol 18 (1) ◽  
pp. 22-50 ◽  
Author(s):  
Henry Burnett ◽  
Shaugn O'Donnell


Sign in / Sign up

Export Citation Format

Share Document