scholarly journals Random Orders and Gambler's Ruin

10.37236/1920 ◽  
2005 ◽  
Vol 12 (1) ◽  
Author(s):  
Andreas Blass ◽  
Gábor Braun

We prove a conjecture of Droste and Kuske about the probability that $1$ is minimal in a certain random linear ordering of the set of natural numbers. We also prove generalizations, in two directions, of this conjecture: when we use a biased coin in the random process and when we begin the random process with a specified ordering of a finite initial segment of the natural numbers. Our proofs use a connection between the conjecture and a question about the game of gambler's ruin. We exhibit several different approaches (combinatorial, probabilistic, generating function) to the problem, of course ultimately producing equivalent results.


Mathematics ◽  
2021 ◽  
Vol 9 (8) ◽  
pp. 868
Author(s):  
Khrystyna Prysyazhnyk ◽  
Iryna Bazylevych ◽  
Ludmila Mitkova ◽  
Iryna Ivanochko

The homogeneous branching process with migration and continuous time is considered. We investigated the distribution of the period-life τ, i.e., the length of the time interval between the moment when the process is initiated by a positive number of particles and the moment when there are no individuals in the population for the first time. The probability generating function of the random process, which describes the behavior of the process within the period-life, was obtained. The boundary theorem for the period-life of the subcritical or critical branching process with migration was found.



2007 ◽  
Vol 72 (3) ◽  
pp. 1003-1018 ◽  
Author(s):  
John Chisholm ◽  
Jennifer Chubb ◽  
Valentina S. Harizanov ◽  
Denis R. Hirschfeldt ◽  
Carl G. Jockusch ◽  
...  

AbstractWe study the weak truth-table and truth-table degrees of the images of subsets of computable structures under isomorphisms between computable structures. In particular, we show that there is a low c.e. set that is not weak truth-table reducible to any initial segment of any scattered computable linear ordering. Countable subsets of 2ω and Kolmogorov complexity play a major role in the proof.



10.37236/1957 ◽  
2005 ◽  
Vol 12 (1) ◽  
Author(s):  
M. D. Atkinson ◽  
M. M. Murphy ◽  
N. Ruškuc

Pattern avoidance classes of permutations that cannot be expressed as unions of proper subclasses can be described as the set of subpermutations of a single bijection. In the case that this bijection is a permutation of the natural numbers a structure theorem is given. The structure theorem shows that the class is almost closed under direct sums or has a rational generating function.



Author(s):  
A.V. Kalinkin

The paper considers a quadratic birth-death Markov process. The points on a line segment located within a quarter-plane represent the states of the random process. We designate the set of vectors that have integer non-negative coordinates as our quarter plane. The process is defined by infinitesimal characteristics, or transition probability densities. These characteristics are determined by a quadratic function of the coordinates at the segment points with integer coordinates. The boundary points of the segment are absorbing; at these points, the random process stops. We investigated a critical case when process jumps are equally probable at the moment of exiting a point. We derived expressions describing transition probabilities of the Markov process as a spectral series. We used a two-dimensional exponential generating function of transition probabilities and a two-dimensional generating function of transition probabilities. The first and second systems of ordinary differential Kolmogorov equations for Markov process transition probabilities are reduced to second-order mixed type partial differential equations for a double generating function. We solve the resulting system of linear equations using separation of variables. The spectrum obtained is discrete. The eigen-functions are expressed in terms of hypergeometric functions. The particular solution constructed is a Fourier series, whose coefficients are derived by means of expo-nential expansion. We employed sums of functional series known in the theory of special functions to construct the exponential expansion required



1976 ◽  
Vol 41 (2) ◽  
pp. 363-367 ◽  
Author(s):  
Harvey Friedman

This paper answers some questions which naturally arise from the Spector-Gandy proof of their theorem that the π11 sets of natural numbers are precisely those which are defined by a Σ11 formula over the hyperarithmetic sets. Their proof used hierarchies on recursive linear orderings (H-sets) which are not well orderings. (In this respect they anticipated the study of nonstandard models of set theory.) The proof hinged on the following fact. Let e be a recursive linear ordering. Then e is a well ordering if and only if there is an H-set on e which is hyperarithmetic. It was implicit in their proof that there are recursive linear orderings which are not well orderings, on which there are H-sets. Further information on such nonstandard H-sets (often called pseudohierarchies) can be found in Harrison [4]. It is natural to ask: on which recursive linear orderings are there H-sets?In Friedman [1] it is shown that there exists a recursive linear ordering e that has no hyperarithmetic descending sequences such that no H-set can be placed on e. In [1] it is also shown that if e is a recursive linear ordering, every point of which has an immediate successor and either has finitely many predecessors or is finitely above a limit point (heretofore called adequate) such that an H-set can be placed on e, then e has no hyperarithmetic descending sequences. In a related paper, Friedman [2] shows that there is no infinite sequence xn of codes for ω-models of the arithmetic comprehension axiom scheme such that each xn+ 1 is a set in the ω-model coded by xn, and each xn+1 is the unique solution of P(xn, xn+1) for some fixed arithmetic P.



2018 ◽  
Vol 27 (07) ◽  
pp. 1841001
Author(s):  
Trang Ha ◽  
Valentina Harizanov

We investigate algebraic and computability-theoretic properties of orderable magmas. A magma is an algebraic structure with a single binary operation. A right order on a magma is a linear ordering of its domain, which is right-invariant with respect to the magma operation. We use tools of computability theory to investigate Turing complexity of orders on computable orderable magmas. A magma is computable if it is finite, or if its domain can be identified with the set of natural numbers and the magma operation is computable. Interesting orderable magmas that are not even associative come from knot theory.



1972 ◽  
Vol 37 (3) ◽  
pp. 521-530 ◽  
Author(s):  
James H. Schmerl

Let < and ≼ be two distinguished binary relation symbols. A structure is κ-like iff is a linear ordering of A, card(A) = κ, and every proper initial segment of A has cardinality < κ. A structure is α-ordered iff is a (reflexive) linear ordering of type α with field a subset of A. We define when a cardinal κ is α-inaccessible. (In this paper, inaccessible always means weakly inaccessible.) The 0-inaccessible cardinals are just the inaccessible cardinals; if α > 0, then κ is α-inaccessible iff for each β < α, each closed, cofinal subset of κ contains a β-inaccessible. (The (1 + α)-inaccessibles are just the ρα cardinals of Mahlo.) This paper is concerned with the proof of the following theorem.Main Theorem. There is an elementary sentence σ with the property that whenever α is an ordinal and κ an infinite cardinal, then σ has an α-ordered κ-like model iff κ is not α-inaccessible.This theorem gives some additional answers to a question of Mostowski about languages with generalized quantifiers. Fuhrken [1] showed that this question is equivalent to the following one: For which cardinals κ and λ is it true that if an elementary sentence has a κ-like model, then it has a λ-like model? It is actually this question to which the theorem refers. The theorem limits the possible pairs κ, λ of cardinals which answer the question. In fact, if the question is generalized so as to permit sentences from some more extensive language, then the theorem still limits the possible answers. For a more thorough introduction to this problem, the reader is referred to the aforementioned article of Fuhrken as well as Keisler [2] and Vaught [6].



1985 ◽  
Vol 50 (2) ◽  
pp. 423-441 ◽  
Author(s):  
Pavel Pudlák

Interpretability in reflexive theories, especially in PA, has been studied in many papers; see e.g. [3], [6], [7], [10], [11], [15], [26]. It has been shown that reflexive theories exhibit many nice properties, e.g. (1) if T, S are recursively enumerable reflexive, then T is interpretable in S iff every Π1 sentence provable in T is provable in S; and (2) if S is reflexive, T is recursively enumerable and locally interpretable in S (i.e. every finite part of T is interpretable in S), then T is globally interpretable in S (Orey's theorem, cf. [3]).In this paper we want to study such statements for nonreflexive theories, especially for finitely axiomatizable theories (which are never reflexive). These theories behave differently, although they may be quite close to reflexive theories, as e.g. GB to ZF. An important fact is that in such theories one can define proper cuts. By a cut we mean a formula with one free variable which defines a nonempty initial segment of natural numbers closed under the successor function. The importance of cuts for interpretations in GB was realized already by Vopěnka and Hájek in [30]. Pioneering work was done by Solovay in [24]. There he developed the method of “shortening of cuts”. Using this method it is possible to replace any cut by a cut which is contained in it and has some desirable additional properties; in particular it can be closed under + and ·. This introduces ambiguity in the concept of arithmetic in theories which admit proper cuts, namely, which cut (closed under + and ·) should be called the arithmetic of the theory? Cuts played the crucial role also in [20].



1991 ◽  
Vol 56 (3) ◽  
pp. 1075-1084 ◽  
Author(s):  
Masahiro Kumabe

Let ω be the set of natural numbers, i.e. {0, 1, 2, 3, …}. A string is a mapping from an initial segment of ω into {0, 1}. We identify a set A ≤ ω with its characteristic function. A set A ≤ ω is called n-generic if it is Cohen-generic for n-quantifier arithmetic. This is equivalent to saying that for every set of strings S, there is a σ < A such that σ ∈ S or (∀ν ≥ σ)(ν ∉ S). By degree we mean Turing degree (of unsolvability). We call a degree n-generic if it has an n-generic representative. For a degree a, D(≤ a) denotes the set of degrees recursive in a.The relation between generic degrees and minimal degrees has been widely studied. Spector [9] proved the existence of minimal degrees. Shoenfield [8] simplified the proof by using trees. In the construction of a minimal degree, given σ we extend σ to ν so that ν is in the (splitting or nonsplitting) subtree of a given tree. But in the construction of a generic set, given σ we extend σ to ν to meet the given dense set. So these two constructions are quite different. Jockusch [5] showed that any 2-generic degree bounds no minimal degree. Chong and Jockusch [3] showed that any 1-generic degree below 0′ bounds no minimal degree.



2002 ◽  
Vol 8 (3) ◽  
pp. 329-347 ◽  
Author(s):  
Mark van Atten ◽  
Dirk van Dalen

There are two principles that lend Brouwer's mathematics the extra power beyond arithmetic. Both are presented in Brouwer's writings with little or no argument. One, the principle of bar induction, will not concern us here. The other, the continuity principle for numbers, occurs for the first time in print in [4]. It is formulated and immediately applied to show that the set of numerical choice sequences is not enumerable. In fact, the idea of the continuity property can be dated fairly precisely, it is to be found in the margin of Brouwer's notes for his course on Pointset Theory of 1915/16. The course was repeated in 1916/17 and he must have inserted his first formulation of the continuity principle in the fall of 1916 as new material right at the beginning of the course.In modern language, the principle readswhere α and β range over choice sequences of natural numbers, m and x over natural numbers, and stands for ⟨α(0), α(1), …, α(m − 1)⟩, the initial segment of α of length m.An immediate consequence of WC-N is that all full functions are continuous, and, as a corollary, that the continuum is unsplittable [28]. Note that WC-N is incompatible with Church's thesis, [22], section 4.6.After Brouwer asserted WC-N, Troelstra was the first to ask in print for a conceptual motivation, but he remained an exception; most authors followed Brouwer by simply asserting it, cf. [18].Let us note first that in one particular case the principle is obvious indeed, namely in the case of the lawless sequences. The notion of lawless sequence surfaced fairly late in the history of intuitionism. Kreisel introduced it in [17] for metamathematical purposes. There is a letter from Brouwer to Heyting in which the phenomenon also occurs [7]. This is an important and interesting fact since it is (probably) the only time that Brouwer made use of a possibility expressly stipulated in, e.g., [5], see below.



Sign in / Sign up

Export Citation Format

Share Document