Conservative reduction classes of Krom formulas

1982 ◽  
Vol 47 (1) ◽  
pp. 110-130 ◽  
Author(s):  
Stål O. Aanderaa ◽  
Egon Börger ◽  
Harry R. Lewis

AbstractA Krom formula of pure quantification theory is a formula in conjunctive normal form such that each conjunct is a disjunction of at most two atomic formulas or negations of atomic formulas. Every class of Krom formulas that is determined by the form of their quantifier prefixes and which is known to have an unsolvable decision problem for satisfiability is here shown to be a conservative reduction class. Therefore both the general satisfiability problem, and the problem of satisfiability in finite models, can be effectively reduced from arbitrary formulas to Krom formulas of these several prefix types.

1970 ◽  
Vol 35 (2) ◽  
pp. 210-216 ◽  
Author(s):  
M. R. Krom

In [8] S. J. Maslov gives a positive solution to the decision problem for satisfiability of formulas of the formin any first-order predicate calculus without identity where h, k, m, n are positive integers, αi, βi are signed atomic formulas (atomic formulas or negations of atomic formulas), and ∧, ∨ are conjunction and disjunction symbols, respectively (cf. [6] for a related solvable class). In this paper we show that the decision problem is unsolvable for formulas that are like those considered by Maslov except that they have prefixes of the form ∀x∃y1 … ∃yk∀z. This settles the decision problems for all prefix classes of formulas for formulas that are in prenex conjunctive normal form in which all disjunctions are binary (have just two terms). In our concluding section we report results on decision problems for related classes of formulas including classes of formulas in languages with identity and we describe some special properties of formulas in which all disjunctions are binary including a property that implies that any proof of our result, that a class of formulas is a reduction class for satisfiability, is necessarily indirect. Our proof is based on an unsolvable combinatorial tag problem.


1976 ◽  
Vol 41 (1) ◽  
pp. 45-49
Author(s):  
Charles E. Hughes

AbstractA new reduction class is presented for the satisfiability problem for well-formed formulas of the first-order predicate calculus. The members of this class are closed prenex formulas of the form ∀x∀yC. The matrix C is in conjunctive normal form and has no disjuncts with more than three literals, in fact all but one conjunct is unary. Furthermore C contains but one predicate symbol, that being unary, and one function symbol which symbol is binary.


1975 ◽  
Vol 40 (1) ◽  
pp. 62-68 ◽  
Author(s):  
Warren D. Goldfarb ◽  
Harry R. Lewis

Among the earliest and best-known theorems on the decision problem is Skolem's result [7] that the class of all closed formulas with prefixes of the form ∀···∀∃···∃ is a reduction class for satisfiability for the whole of quantification theory. This result can be refined in various ways. If the Skolem prefix alone is considered, the best result [8] is that the ∀∀∀∃ class is a reduction class, for Gödel [3], Kalmár [4], and Schütte [6] showed the ∀∀∃···∃ class to be solvable. The purpose of this paper is to describe the more complex situation that arises when (Skolem) formulas are restricted with respect to the arguments of their atomic subformulas. Before stating our theorem, we must introduce some notation.Let x, y1, y2, be distinct variables (we shall use v1, v2, ··· and w1, w2, ··· as metavariables ranging over these variables), and for each i ≥ 1 let Y(i) be the set {y1, ···, yi}. An atomic formula Pv1 ··· vk will be said to be {v1, ···, vk}-based. For any n ≥ 1, p ≥ 1, and any subsets Y1, ··· Yp of Y(n), let C(n, Y1, ···, Yp) be the class of all those closed formulas with prefix ∀y1 ··· ∀yn∃x such that each atomic subformula not containing the variable x is Yi-based for some i, 1 ≤ i ≤ p.


2016 ◽  
Vol 328 ◽  
pp. 31-45 ◽  
Author(s):  
Guillermo De Ita Luna ◽  
J. Raymundo Marcial-Romero ◽  
José A. Hernández

1973 ◽  
Vol 38 (3) ◽  
pp. 471-480 ◽  
Author(s):  
Harry R. Lewis ◽  
Warren D. Goldfarb

In this paper we consider classes of quantificational formulas specified by restrictions on the number of atomic subformulas appearing in a formula. Little seems to be known about the decision problem for such classes, except that the class whose members contain at most two distinct atomic subformulas is decidable [2]. (We use “decidable” and “undecidable” throughout with respect to satisfiability rather than validity. All undecidable problems to which we refer are of maximal r.e. degree.) The principal result of this paper is the undecidability of the class of those formulas containing five atomic subformulas and with prefixes of the form ∀∃∀…∀. In fact, we show the undecidability of two sub-classes of this class: one (Theorem 1) consists of formulas whose matrices are in disjunctive normal form with two disjuncts; the other (Corollary 1) consists of formulas whose matrices are in conjunctive normal form with three conjuncts. (Theorem 1 sharpens Orevkov's result [8] that the class of formulas in disjunctive normal form with two disjuncts is undecidable.) A second corollary of Theorem 1 shows the undecidability of the class of formulas with prefixes of the form ∀…∀∃, containing six atomic subformulas, and in conjunctive normal form with three conjuncts. These restrictions to prefixes ∀∃∀…∀ and ∀…∀∃ are optimal. For by a result of the first author [5], any class of prenex formulas obtained by restricting both the number of atomic formulas and the number of universal quantifiers is reducible to a finite class of formulas, and so each such class is decidable; and the class of formulas with prefixes ∃…∃∀…∀ is, of course, decidable.


2010 ◽  
Vol 19 (5-6) ◽  
pp. 775-790 ◽  
Author(s):  
ANDREAS GOERDT

Ordering constraints are formally analogous to instances of the satisfiability problem in conjunctive normal form, but instead of a boolean assignment we consider a linear ordering of the variables in question. A clause becomes true given a linear ordering if and only if the relative ordering of its variables obeys the constraint considered.The naturally arising satisfiability problems are NP-complete for many types of constraints. We look at random ordering constraints. Previous work of the author shows that there is a sharp unsatisfiability threshold for certain types of constraints. The value of the threshold, however, is essentially undetermined. We pursue the problem of approximating the precise value of the threshold. We show that random instances of the betweenness constraint are satisfiable with high probability if the number of randomly picked clauses is ≤0.92n, where n is the number of variables considered. This improves the previous bound, which is <0.82n random clauses. The proof is based on a binary relaxation of the betweenness constraint and involves some ideas not used before in the area of random ordering constraints.


2005 ◽  
Vol 2005 (2) ◽  
pp. 61-74 ◽  
Author(s):  
Renato Bruni

The orthogonal conjunctive normal form of a Boolean function is a conjunctive normal form in which any two clauses contain at least a pair of complementary literals. Orthogonal disjunctive normal form is defined similarly. Orthogonalization is the process of transforming the normal form of a Boolean function to orthogonal normal form. The problem is of great relevance in several applications, for example, in the reliability theory. Moreover, such problem is strongly connected with the well-known propositional satisfiability problem. Therefore, important complexity issues are involved. A general procedure for transforming an arbitrary CNF or DNF to an orthogonal one is proposed. Such procedure is tested on randomly generated Boolean formulae.


Author(s):  
N.I. Gdansky ◽  
◽  
A.A. Denisov ◽  

The article explores the satisfiability of conjunctive normal forms used in modeling systems.The problems of CNF preprocessing are considered.The analysis of particular methods for reducing this formulas, which have polynomial input complexity is given.


Author(s):  
Karem A. Sakallah

Symmetry is at once a familiar concept (we recognize it when we see it!) and a profoundly deep mathematical subject. At its most basic, a symmetry is some transformation of an object that leaves the object (or some aspect of the object) unchanged. For example, a square can be transformed in eight different ways that leave it looking exactly the same: the identity “do-nothing” transformation, 3 rotations, and 4 mirror images (or reflections). In the context of decision problems, the presence of symmetries in a problem’s search space can frustrate the hunt for a solution by forcing a search algorithm to fruitlessly explore symmetric subspaces that do not contain solutions. Recognizing that such symmetries exist, we can direct a search algorithm to look for solutions only in non-symmetric parts of the search space. In many cases, this can lead to significant pruning of the search space and yield solutions to problems which are otherwise intractable. This chapter explores the symmetries of Boolean functions, particularly the symmetries of their conjunctive normal form (CNF) representations. Specifically, it examines what those symmetries are, how to model them using the mathematical language of group theory, how to derive them from a CNF formula, and how to utilize them to speed up CNF SAT solvers.


Sign in / Sign up

Export Citation Format

Share Document