Epistemic set theory is a conservative extension of intuitionistic set theory

1985 ◽  
Vol 50 (4) ◽  
pp. 895-902 ◽  
Author(s):  
R. C. Flagg

In [6] Gödel observed that intuitionistic propositional logic can be interpreted in Lewis's modal logic (S4). The idea behind this interpretation is to regard the modal operator □ as expressing the epistemic notion of “informal provability”. With the work of Shapiro [12], Myhill [10], Goodman [7], [8], and Ščedrov [11] this simple idea has developed into a successful program of integrating classical and intuitionistic mathematics.There is one question quite central to the above program that has remained open. Namely:Does Ščedrov's extension of the Gödel translation to set theory provide a faithful interpretation of intuitionistic set theory into epistemic set theory?In the present paper we give an affirmative answer to this question.The main ingredient in our proof is the construction of an interpretation of epistemic set theory into intuitionistic set theory which is inverse to the Gödel translation. This is accomplished in two steps. First we observe that Funayama's theorem is constructively provable and apply it to the power set of 1. This provides an embedding of the set of propositions into a complete topological Boolean algebra . Second, in a fashion completely analogous to the construction of Boolean-valued models of classical set theory, we define the -valued universe V(). V() gives a model of epistemic set theory and, since we use a constructive metatheory, this provides an interpretation of epistemic set theory into intuitionistic set theory.


1999 ◽  
Vol 64 (2) ◽  
pp. 486-488 ◽  
Author(s):  
John L. Bell

By Frege's Theorem is meant the result, implicit in Frege's Grundlagen, that, for any set E, if there exists a map υ from the power set of E to E satisfying the conditionthen E has a subset which is the domain of a model of Peano's axioms for the natural numbers. (This result is proved explicitly, using classical reasoning, in Section 3 of [1].) My purpose in this note is to strengthen this result in two directions: first, the premise will be weakened so as to require only that the map υ be defined on the family of (Kuratowski) finite subsets of the set E, and secondly, the argument will be constructive, i.e., will involve no use of the law of excluded middle. To be precise, we will prove, in constructive (or intuitionistic) set theory, the followingTheorem. Let υ be a map with domain a family of subsets of a set E to E satisfying the following conditions:(i) ø ϵdom(υ)(ii)∀U ϵdom(υ)∀x ϵ E − UU ∪ x ϵdom(υ)(iii)∀UV ϵdom(5) υ(U) = υ(V) ⇔ U ≈ V.Then we can define a subset N of E which is the domain of a model of Peano's axioms.



1965 ◽  
Vol 30 (1) ◽  
pp. 1-7 ◽  
Author(s):  
Gaisi Takeuti

In this paper, by a function of ordinals we understand a function which is defined for all ordinals and each of whose value is an ordinal. In [7] (also cf. [8] or [9]) we defined recursive functions and predicates of ordinals, following Kleene's definition on natural numbers. A predicate will be called arithmetical, if it is obtained from a recursive predicate by prefixing a sequence of alternating quantifiers. A function will be called arithmetical, if its representing predicate is arithmetical.The cardinals are identified with those ordinals a which have larger power than all smaller ordinals than a. For any given ordinal a, we denote by the cardinal of a and by 2a the cardinal which is of the same power as the power set of a. Let χ be the function such that χ(a) is the least cardinal which is greater than a.Now there are functions of ordinals such that they are easily defined in set theory, but it seems impossible to define them as arithmetical ones; χ is such a function. If we define χ in making use of only the language on ordinals, it seems necessary to use the notion of all the functions from ordinals, e.g., as in [6].



Studia Logica ◽  
1996 ◽  
Vol 56 (3) ◽  
pp. 361-392 ◽  
Author(s):  
Masaru Shirahata


2007 ◽  
Vol 48 (4) ◽  
pp. 473-488 ◽  
Author(s):  
Riccardo Camerlo




2003 ◽  
Vol 03 (01) ◽  
pp. 67-83
Author(s):  
HARVEY M. FRIEDMAN

We present some new set and class theoretic independence results from ZFC and NBGC that are particularly simple and close to the primitives of membership and equality (see Secs. 4 and 5). They are shown to be equivalent to familiar small large cardinal hypotheses. We modify these independendent statements in order to give an example of a sentence in set theory with 5 quantifiers which is independent of ZFC (see Sec. 6). It is known that all 3 quantifier sentences are decided in a weak fragment of ZF without power set (see [4]).





1986 ◽  
Vol 51 (3) ◽  
pp. 748-754 ◽  
Author(s):  
Andre Scedrov

Myhill [12] extended the ideas of Shapiro [15], and proposed a system of epistemic set theory IST (based on modal S4 logic) in which the meaning of the necessity operator is taken to be the intuitive provability, as formalized in the system itself. In this setting one works in classical logic, and yet it is possible to make distinctions usually associated with intuitionism, e.g. a constructive existential quantifier can be expressed as (∃x) □ …. This was first confirmed when Goodman [7] proved that Shapiro's epistemic first order arithmetic is conservative over intuitionistic first order arithmetic via an extension of Gödel's modal interpretation [6] of intuitionistic logic.Myhill showed that whenever a sentence □A ∨ □B is provable in IST, then A is provable in IST or B is provable in IST (the disjunction property), and that whenever a sentence ∃x.□A(x) is provable in IST, then so is A(t) for some closed term t (the existence property). He adapted the Friedman slash [4] to epistemic systems.Goodman [8] used Epistemic Replacement to formulate a ZF-like strengthening of IST, and proved that it was a conservative extension of ZF and that it had the disjunction and existence properties. It was then shown in [13] that a slight extension of Goodman's system with the Epistemic Foundation (ZFER, cf. §1) suffices to interpret intuitionistic ZF set theory with Replacement (ZFIR, [10]). This is obtained by extending Gödel's modal interpretation [6] of intuitionistic logic. ZFER still had the properties of Goodman's system mentioned above.



Sign in / Sign up

Export Citation Format

Share Document