Frege's theorem in a constructive setting

1999 ◽  
Vol 64 (2) ◽  
pp. 486-488 ◽  
Author(s):  
John L. Bell

By Frege's Theorem is meant the result, implicit in Frege's Grundlagen, that, for any set E, if there exists a map υ from the power set of E to E satisfying the conditionthen E has a subset which is the domain of a model of Peano's axioms for the natural numbers. (This result is proved explicitly, using classical reasoning, in Section 3 of [1].) My purpose in this note is to strengthen this result in two directions: first, the premise will be weakened so as to require only that the map υ be defined on the family of (Kuratowski) finite subsets of the set E, and secondly, the argument will be constructive, i.e., will involve no use of the law of excluded middle. To be precise, we will prove, in constructive (or intuitionistic) set theory, the followingTheorem. Let υ be a map with domain a family of subsets of a set E to E satisfying the following conditions:(i) ø ϵdom(υ)(ii)∀U ϵdom(υ)∀x ϵ E − UU ∪ x ϵdom(υ)(iii)∀UV ϵdom(5) υ(U) = υ(V) ⇔ U ≈ V.Then we can define a subset N of E which is the domain of a model of Peano's axioms.

Author(s):  
Neil Tennant

The Law of Excluded Middle is not to be blamed for any of the logico-semantic paradoxes. We explain and defend our proof-theoretic criterion of paradoxicality, according to which the ‘proofs’ of inconsistency associated with the paradoxes are in principle distinct from those that establish genuine inconsistencies, in that they cannot be brought into normal form. Instead, the reduction sequences initiated by paradox-posing proofs ‘of ⊥’ do not terminate. This criterion is defended against some recent would-be counterexamples by stressing the need to use Core Logic’s parallelized forms of the elimination rules. We show how Russell’s famous paradox in set theory is not a genuine paradox; for it can be construed as a disproof, in the free logic of sets, of the assumption that the set of all non-self-membered sets exists. The Liar (by contrast) is still paradoxical, according to the proof-theoretic criterion of paradoxicality.


1999 ◽  
Vol 64 (4) ◽  
pp. 1552-1556 ◽  
Author(s):  
John L. Bell

Call a family of subsets of a set E inductive if and is closed under unions with disjoint singletons, that is, ifA Frege structure is a pair (E, ν) with ν a map to E whose domain dom(ν) is an inductive family of subsets of E such thatIn [2] it is shown in a constructive setting that each Frege structure determines a subset which is the domain of a model of Peano's axioms. In this note we establish, within the same constructive setting, three facts. First, we show that the least inductive family of subsets of a set E is precisely the family of decidable Kuratowski finite subsets of E. Secondly, we establish that the procedure presented in [2] can be reversed, that is, any set containing the domain of a model of Peano's axioms determines a map which turns the set into a minimal Frege structure: here by a minimal Frege structure is meant one in which dom(ν) is the least inductive family of subsets of E. And finally, we show that the procedures leading from minimal Frege structures to models of Peano's axioms and vice-versa are mutually inverse. It follows that the postulation of a (minimal) Frege structure is constructively equivalent to the postulation of a model of Peano's axioms.All arguments will be formulated within constructive (intuitionistic) set theory.


1985 ◽  
Vol 50 (2) ◽  
pp. 344-348 ◽  
Author(s):  
Nicolas D. Goodman

Intuitionistic Zermelo-Fraenkel set theory, which we call ZFI, was introduced by Friedman and Myhill in [3] in 1970. The idea was to have a theory with the same axioms as ordinary classical ZF, but with Heyting's predicate calculus HPC as the underlying logic. Since some classically equivalent statements are intuitionistically inequivalent, however, it was not always obvious which form of a classical axiom to take. For example, the usual formulation of the axiom of foundation had to be replaced with a principle of transfinite induction on the membership relation in order to avoid having excluded middle provable and thus making the logic classical. In [3] the replacement axiom is taken in its most common classical form:In the presence of the separation axiom,this is equivalent to the axiomIt is this schema Rep that we shall call the replacement axiom.Friedman and Myhill were able to show in [3] that ZFI has a number of desirable “constructive” properties, including the existence property for both numbers and sets. They were not able to determine, however, whether ZFI is proof-theoretically as strong as ZF. This is still open.Three years later, in [2], Friedman introduced a theory ZF− which is like ZFI except that the replacement axiom is changed to the classically equivalent collection axiom:He showed that ZF− is proof-theoretically of the same strength as ZF, and he asked whether ZF− is equivalent to ZFI.


2009 ◽  
Vol 74 (2) ◽  
pp. 689-692
Author(s):  
Charles McCarty

Since intuitionistic sets are not generally stable – their membership relations are not always closed under double negation – the open sets of a topology cannot be recovered from the closed sets of that topology via complementation, at least without further ado. Dana Scott asked, first, whether it is possible intuitionistically for two distinct topologies, given as collections of open sets on the same carrier, to share their closed sets. Second, he asked whether there can be intuitionistic functions that are closed continuous in that the inverse of every closed set is closed without being continuous in the usual, open sense. Here, we prove that, as far as intuitionistic set theory is concerned, there can be infinitely-many distinct topologies on the same carrier sharing a single collection of closed sets. The proof employs Heyting-valued sets, and demonstrates that the intuitionistic set theory IZF [4, 624], as well as the theory IZF plus classical elementary arithmetic, are both consistent with the statement that infinitely many topologies on the set of natural numbers share the same closed sets. Without changing models, we show that these formal theories are also consistent with the statement that there are infinitely many endofunctions on the natural numbers that are closed continuous but not open continuous with respect to a single topology.For each prime k ∈ ω, let Ak be this ω-sequence of sets open in the standard topology on the closed unit interval: for each n ∈ ω,


Author(s):  
Harvey M. Friedman ◽  
Andrej Ščedrov

Formal propositional logic describing the laws of constructive (intuitionistic) reasoning was first proposed in 1930 by Heyting. It is obtained from classical pro-positional calculus by deleting the Law of Excluded Middle, and it is usually referred to as Heyting's (intuitionistic) propositional calculus ([9], §§23, 19) (we write HPP in short). Formal logic involving predicates and quantifiers based on HPP is called Heyting's (intuitionistic) predicate calculus ([9], §§31, 19) (we write HPR in short).


1965 ◽  
Vol 30 (1) ◽  
pp. 1-7 ◽  
Author(s):  
Gaisi Takeuti

In this paper, by a function of ordinals we understand a function which is defined for all ordinals and each of whose value is an ordinal. In [7] (also cf. [8] or [9]) we defined recursive functions and predicates of ordinals, following Kleene's definition on natural numbers. A predicate will be called arithmetical, if it is obtained from a recursive predicate by prefixing a sequence of alternating quantifiers. A function will be called arithmetical, if its representing predicate is arithmetical.The cardinals are identified with those ordinals a which have larger power than all smaller ordinals than a. For any given ordinal a, we denote by the cardinal of a and by 2a the cardinal which is of the same power as the power set of a. Let χ be the function such that χ(a) is the least cardinal which is greater than a.Now there are functions of ordinals such that they are easily defined in set theory, but it seems impossible to define them as arithmetical ones; χ is such a function. If we define χ in making use of only the language on ordinals, it seems necessary to use the notion of all the functions from ordinals, e.g., as in [6].


Author(s):  
Marcel Buß

Abstract Immanuel Kant states that indirect arguments are not suitable for the purposes of transcendental philosophy. If he is correct, this affects contemporary versions of transcendental arguments which are often used as an indirect refutation of scepticism. I discuss two reasons for Kant’s rejection of indirect arguments. Firstly, Kant argues that we are prone to misapply the law of excluded middle in philosophical contexts. Secondly, Kant points out that indirect arguments lack some explanatory power. They can show that something is true but they do not provide insight into why something is true. Using mathematical proofs as examples, I show that this is because indirect arguments are non-constructive. From a Kantian point of view, transcendental arguments need to be constructive in some way. In the last part of the paper, I briefly examine a comment made by P. F. Strawson. In my view, this comment also points toward a connection between transcendental and constructive reasoning.


1998 ◽  
pp. 92-112
Author(s):  
Quentin Gibson

1985 ◽  
Vol 50 (4) ◽  
pp. 895-902 ◽  
Author(s):  
R. C. Flagg

In [6] Gödel observed that intuitionistic propositional logic can be interpreted in Lewis's modal logic (S4). The idea behind this interpretation is to regard the modal operator □ as expressing the epistemic notion of “informal provability”. With the work of Shapiro [12], Myhill [10], Goodman [7], [8], and Ščedrov [11] this simple idea has developed into a successful program of integrating classical and intuitionistic mathematics.There is one question quite central to the above program that has remained open. Namely:Does Ščedrov's extension of the Gödel translation to set theory provide a faithful interpretation of intuitionistic set theory into epistemic set theory?In the present paper we give an affirmative answer to this question.The main ingredient in our proof is the construction of an interpretation of epistemic set theory into intuitionistic set theory which is inverse to the Gödel translation. This is accomplished in two steps. First we observe that Funayama's theorem is constructively provable and apply it to the power set of 1. This provides an embedding of the set of propositions into a complete topological Boolean algebra . Second, in a fashion completely analogous to the construction of Boolean-valued models of classical set theory, we define the -valued universe V(). V() gives a model of epistemic set theory and, since we use a constructive metatheory, this provides an interpretation of epistemic set theory into intuitionistic set theory.


Sign in / Sign up

Export Citation Format

Share Document