large cardinal
Recently Published Documents


TOTAL DOCUMENTS

115
(FIVE YEARS 9)

H-INDEX

13
(FIVE YEARS 1)

2021 ◽  
Vol 27 (2) ◽  
pp. 221-222
Author(s):  
Alejandro Poveda

AbstractThe dissertation under comment is a contribution to the area of Set Theory concerned with the interactions between the method of Forcing and the so-called Large Cardinal axioms.The dissertation is divided into two thematic blocks. In Block I we analyze the large-cardinal hierarchy between the first supercompact cardinal and Vopěnka’s Principle (Part I). In turn, Block II is devoted to the investigation of some problems arising from Singular Cardinal Combinatorics (Part II and Part III).We commence Part I by investigating the Identity Crisis phenomenon in the region comprised between the first supercompact cardinal and Vopěnka’s Principle. As a result, we generalize Magidor’s classical theorems [2] to this higher region of the large-cardinal hierarchy. Also, our analysis allows to settle all the questions that were left open in [1]. Finally, we conclude Part I by presenting a general theory of preservation of $C^{(n)}$ -extendible cardinals under class forcing iterations. From this analysis we derive several applications. For instance, our arguments are used to show that an extendible cardinal is consistent with “ $(\lambda ^{+\omega })^{\mathrm {HOD}}<\lambda ^+$ , for every regular cardinal $\lambda $ .” In particular, if Woodin’s HOD Conjecture holds, and therefore it is provable in ZFC + “There exists an extendible cardinal” that above the first extendible cardinal every singular cardinal $\lambda $ is singular in HOD and $(\lambda ^+)^{\textrm {{HOD}}}=\lambda ^+$ , there may still be no agreement at all between V and HOD about successors of regular cardinals.In Part II and Part III we analyse the relationship between the Singular Cardinal Hypothesis (SCH) with other relevant combinatorial principles at the level of successors of singular cardinals. Two of these are the Tree Property and the Reflection of Stationary sets, which are central in Infinite Combinatorics.Specifically, Part II is devoted to prove the consistency of the Tree Property at both $\kappa ^+$ and $\kappa ^{++}$ , whenever $\kappa $ is a strong limit singular cardinal witnessing an arbitrary failure of the SCH. This generalizes the main result of [3] in two senses: it allows arbitrary cofinalities for $\kappa $ and arbitrary failures for the SCH.In the last part of the dissertation (Part III) we introduce the notion of $\Sigma $ -Prikry forcing. This new concept allows an abstract and uniform approach to the theory of Prikry-type forcings and encompasses several classical examples of Prikry-type forcing notions, such as the classical Prikry forcing, the Gitik-Sharon poset, or the Extender Based Prikry forcing, among many others.Our motivation in this part of the dissertation is to prove an iteration theorem at the level of the successor of a singular cardinal. Specifically, we aim for a theorem asserting that every $\kappa ^{++}$ -length iteration with support of size $\leq \kappa $ has the $\kappa ^{++}$ -cc, provided the iterates belong to a relevant class of $\kappa ^{++}$ -cc forcings. While there are a myriad of works on this vein for regular cardinals, this contrasts with the dearth of investigations in the parallel context of singular cardinals. Our main contribution is the proof that such a result is available whenever the class of forcings under consideration is the family of $\Sigma $ -Prikry forcings. Finally, and as an application, we prove that it is consistent—modulo large cardinals—the existence of a strong limit cardinal $\kappa $ with countable cofinality such that $\mathrm {SCH}_\kappa $ fails and every finite family of stationary subsets of $\kappa ^+$ reflects simultaneously.


2021 ◽  
pp. 2150024
Author(s):  
Trevor M. Wilson

We show that Weak Vopěnka’s Principle, which is the statement that the opposite category of ordinals cannot be fully embedded into the category of graphs, is equivalent to the large cardinal principle Ord is Woodin, which says that for every class [Formula: see text] there is a [Formula: see text]-strong cardinal. Weak Vopěnka’s Principle was already known to imply the existence of a proper class of measurable cardinals. We improve this lower bound to the optimal one by defining structures whose nontrivial homomorphisms can be used as extenders, thereby producing elementary embeddings witnessing [Formula: see text]-strongness of some cardinal.


2020 ◽  
Vol 41 (2) ◽  
Author(s):  
Fernando Zalamea

The article presents a reading of Badiou’s trilogy, L’Être et l’événement (1988), Logiques des mondes (2006), and L’Immanence des vérités (2018), and points out the mathematical connections with the works of Cohen, Grothendieck, and large cardinal specialists. A synthetic rendering of these connections is first offered, following precise passages in Badiou’s work, then a category-theoretic and Peircean perspective is explored in order to specify the many dialectics in the trilogy, and, finally, some open problems are proposed. 


2019 ◽  
Vol 60 (4) ◽  
pp. 665-682
Author(s):  
David Asperó ◽  
Tapani Hyttinen ◽  
Vadim Kulikov ◽  
Miguel Moreno

2019 ◽  
Vol 20 (01) ◽  
pp. 2050004
Author(s):  
Joan Bagaria ◽  
Menachem Magidor ◽  
Salvador Mancilla

We introduce the large-cardinal notions of [Formula: see text]-greatly-Mahlo and [Formula: see text]-reflection cardinals and prove (1) in the constructible universe, [Formula: see text], the first [Formula: see text]-reflection cardinal, for [Formula: see text] a successor ordinal, is strictly between the first [Formula: see text]-greatly-Mahlo and the first [Formula: see text]-indescribable cardinals, (2) assuming the existence of a [Formula: see text]-reflection cardinal [Formula: see text] in [Formula: see text], [Formula: see text] a successor ordinal, there exists a forcing notion in [Formula: see text] that preserves cardinals and forces that [Formula: see text] is [Formula: see text]-stationary, which implies that the consistency strength of the existence of a [Formula: see text]-stationary cardinal is strictly below a [Formula: see text]-indescribable cardinal. These results generalize to all successor ordinals [Formula: see text] the original same result of Mekler–Shelah [A. Mekler and S. Shelah, The consistency strength of every stationary set reflects, Israel J. Math. 67(3) (1989) 353–365] about a [Formula: see text]-stationary cardinal, i.e. a cardinal that reflects all its stationary sets.


2019 ◽  
Vol 13 (2) ◽  
pp. 375-387
Author(s):  
MONROE ESKEW

AbstractWe argue against Foreman’s proposal to settle the continuum hypothesis and other classical independent questions via the adoption of generic large cardinal axioms.


2019 ◽  
Vol 84 (02) ◽  
pp. 473-496 ◽  
Author(s):  
JING ZHANG

AbstractThe classical Halpern–Läuchli theorem states that for any finite coloring of a finite product of finitely branching perfect trees of height ω, there exist strong subtrees sharing the same level set such that tuples in the product of the strong subtrees consisting of elements lying on the same level get the same color. Relative to large cardinals, we establish the consistency of a tail cone version of the Halpern–Läuchli theorem at a large cardinal (see Theorem 3.1), which, roughly speaking, deals with many colorings simultaneously and diagonally. Among other applications, we generalize a polarized partition relation on rational numbers due to Laver and Galvin to one on linear orders of larger saturation.


2019 ◽  
Vol 84 (1) ◽  
pp. 301-319
Author(s):  
STAMATIS DIMOPOULOS

AbstractWoodin and Vopěnka cardinals are established notions in the large cardinal hierarchy and it is known that Vopěnka cardinals are the Woodin analogue for supercompactness. Here we give the definition of Woodin for strong compactness cardinals, the Woodinised version of strong compactness, and we prove an analogue of Magidor’s identity crisis theorem for the first strongly compact cardinal.


2019 ◽  
Vol 84 (1) ◽  
pp. 27-53
Author(s):  
DOMINIK ADOLF ◽  
GRIGOR SARGSYAN

AbstractWe introduce a mouse whose derived model satisfies $AD_ + {\rm{\Theta }} \ge \theta _{\aleph _2 } $. More generally, we will introduce a class of large cardinal properties yielding mice whose derived models can satisfy properties as strong as $AD_ + {\rm{\Theta }} = \theta _{\rm{\Theta }} $.


2018 ◽  
Vol 83 (04) ◽  
pp. 1457-1476
Author(s):  
RAFFAELLA CUTOLO

AbstractWe explore the structural properties of the inner model L(Vδ+1) under the assumption that δ is a singular limit of Berkeley cardinals each of which is itself limit of extendible cardinals, lifting some of the main results of the theory of the axiom I0 to the level of Berkeley cardinals, the strongest known large cardinal axioms. Berkeley cardinals have been recently introduced in [1] and contradict the Axiom of Choice.1 In fact, our background theory will be ZF.


Sign in / Sign up

Export Citation Format

Share Document