Orthomodularity is not elementary

1984 ◽  
Vol 49 (2) ◽  
pp. 401-404 ◽  
Author(s):  
Robert Goldblatt

In this note it is shown that the property of orthomodularity of the lattice of orthoclosed subspaces of a pre-Hilbert space is not determined by any first-order properties of the relation ⊥ of orthogonality between vectors in . Implications for the study of quantum logic are discussed at the end of the paper.The key to this result is the following:Ifis a separable Hilbert space, andis an infinite-dimensional pre-Hilbert subspace of, then (, ⊥) and (, ⊥) are elementarily equivalent in the first-order languageL2of a single binary relation.Choosing to be a pre-Hilbert space whose lattice of orthoclosed subspaces is not orthomodular, we obtain our desired conclusion. In this regard we may note the demonstration by Amemiya and Araki [1] that orthomodularity of the lattice of orthoclosed subspaces is necessary and sufficient for a pre-Hilbert space to be metrically complete, and hence be a Hilbert space. Metric completeness being a notoriously nonelementary property, our result is only to be expected (note also the parallel with the elementary L2-equivalence of the natural order (Q, <) of the rationals and its metric completion to the reals (R, <)).To derive (1), something stronger is proved, viz. that (, ⊥) is an elementary substructure of (, ⊥).

2016 ◽  
Vol 81 (3) ◽  
pp. 951-971
Author(s):  
NADAV MEIR

AbstractWe say a structure ${\cal M}$ in a first-order language ${\cal L}$ is indivisible if for every coloring of its universe in two colors, there is a monochromatic substructure ${\cal M}\prime \subseteq {\cal M}$ such that ${\cal M}\prime \cong {\cal M}$. Additionally, we say that ${\cal M}$ is symmetrically indivisible if ${\cal M}\prime$ can be chosen to be symmetrically embedded in ${\cal M}$ (that is, every automorphism of ${\cal M}\prime$ can be extended to an automorphism of ${\cal M}$). Similarly, we say that ${\cal M}$ is elementarily indivisible if ${\cal M}\prime$ can be chosen to be an elementary substructure. We define new products of structures in a relational language. We use these products to give recipes for construction of elementarily indivisible structures which are not transitive and elementarily indivisible structures which are not symmetrically indivisible, answering two questions presented by A. Hasson, M. Kojman, and A. Onshuus.


Author(s):  
Boualem Djehiche ◽  
Hiba Nassar

AbstractWe propose a functional version of the Hodrick–Prescott filter for functional data which take values in an infinite-dimensional separable Hilbert space. We further characterize the associated optimal smoothing operator when the associated linear operator is compact and the underlying distribution of the data is Gaussian.


2019 ◽  
Vol 62 (4) ◽  
pp. 913-924
Author(s):  
H. Carrión ◽  
P. Galindo ◽  
M. L. Lourenço

AbstractWe present an infinite-dimensional version of Cartan's theorem concerning the existence of a holomorphic inverse of a given holomorphic self-map of a bounded convex open subset of a dual Banach space. No separability is assumed, contrary to previous analogous results. The main assumption is that the derivative operator is power bounded, and which we, in turn, show to be diagonalizable in some cases, like the separable Hilbert space.


Author(s):  
UN CIG JI ◽  
KIMIAKI SAITÔ

In this paper we present a construction of an infinite dimensional separable Hilbert space associated with a norm induced from the Lévy trace. The space is slightly different from the Cesàro Hilbert space introduced in Ref. 1. The Lévy Laplacian is discussed with a suitable domain which is constructed by a rigging of Fock spaces based on a rigging of Hilbert spaces with the Lévy trace. Then the Lévy Laplacian can be considered as the Gross Laplacian acting on a certain countable Hilbert space. By constructing one-parameter group of operators of which the infinitesimal generator is the Lévy Laplacian, we study the existence and uniqueness of solution of heat equation associated with the Lévy Laplacian. Moreover we give an infinite dimensional stochastic process generated by the Lévy Laplacian.


1967 ◽  
Vol 32 (2) ◽  
pp. 173-179 ◽  
Author(s):  
James C. Owings

In this paper it will be shown that the ordering of the recursively enumerable (r.e.) sets under inclusion modulo finite differences (m.f.d.), the ordering of the II111 sets under inclusion m.f.d., and the ordering of the metarecursively enumerable (meta-r.e.) sets under inclusion m.f.d. are all distinct. In fact, it will be shown that the three orderings are pairwise elementarily inequivalent when interpreted in the obvious way in a first order language with one binary relation “≥.” Our result answers a question of Hartley Rogers, Jr. [3, p. 203]. All necessary background material may be found in [2] and [4].


1980 ◽  
Vol 77 ◽  
pp. 33-39 ◽  
Author(s):  
Yuichi Komori

The first order language ℒ that we consider has two nullary function symbols 0, 1, a unary function symbol –, a binary function symbol +, a unary relation symbol 0 <, and the binary relation symbol = (equality). Let ℒ′ be the language obtained from ℒ, by adding, for each integer n > 0, the unary relation symbol n| (read “n divides”).


1997 ◽  
Vol 49 (6) ◽  
pp. 1188-1205 ◽  
Author(s):  
Michael J. Leen

AbstractIn this paper we consider the following problem: Given a unital C*- algebra A and a collection of elements S in the identity component of the invertible group of A, denoted inv0(A), characterize the group of finite products of elements of S. The particular C*-algebras studied in this paper are either unital purely infinite simple or of the form (A ⊗ K)+, where A is any C*-algebra and K is the compact operators on an infinite dimensional separable Hilbert space. The types of elements used in the factorizations are unipotents (1+ nilpotent), positive invertibles and symmetries (s2 = 1). First we determine the groups of finite products for each collection of elements in (A ⊗ K)+. Then we give upper bounds on the number of factors needed in these cases. The main result, which uses results for (A ⊗ K)+, is that for A unital purely infinite and simple, inv0(A) is generated by each of these collections of elements.


Author(s):  
Nastaran Alizadeh Moghaddam ◽  
Mohammad Janfada

Motivated by frame-vector for a unitary system, we study a class of cyclic operators on a separable Hilbert space which is called frame-cyclic operators. The orbit of such an operator on some vector, namely frame-cyclic vector, is a frame. Some properties of these operators on finite- and infinite-dimensional Hilbert spaces and their relations with cyclic and hypercyclic operators are established. A lower and upper bound for the norm of a self-adjoint frame-cyclic operator is obtained. Also, construction of the set of frame-cyclic vectors is considered. Finally, we deal with Kato’s approximation of frame-cyclic operators and discuss their frame-cyclic properties.


2018 ◽  
Vol 61 (1) ◽  
pp. 25-31 ◽  
Author(s):  
M. B. ASADI ◽  
M. FRANK ◽  
Z. HASSANPOUR-YAKHDANI

AbstractWe show that if A is a compact C*-algebra without identity that has a faithful *-representation in the C*-algebra of all compact operators on a separable Hilbert space and its multiplier algebra admits a minimal central projection p such that pA is infinite-dimensional, then there exists a Hilbert A1-module admitting no frames, where A1 is the unitization of A. In particular, there exists a frame-less Hilbert C*-module over the C*-algebra $K(\ell^2) \dotplus \mathbb{C}I_{\ell^2}$.


Author(s):  
S. P. Murugan ◽  
S. Sundar

Let [Formula: see text] be a closed convex cone. Assume that [Formula: see text] is pointed, i.e. the intersection [Formula: see text] and [Formula: see text] is spanning, i.e. [Formula: see text]. Denote the interior of [Formula: see text] by [Formula: see text]. Let [Formula: see text] be a product system over [Formula: see text]. We show that there exists an infinite-dimensional separable Hilbert space [Formula: see text] and a semigroup [Formula: see text] of unital normal ∗-endomorphisms of [Formula: see text] such that [Formula: see text] is isomorphic to the product system associated to [Formula: see text].


Sign in / Sign up

Export Citation Format

Share Document