multiplier algebra
Recently Published Documents


TOTAL DOCUMENTS

72
(FIVE YEARS 7)

H-INDEX

8
(FIVE YEARS 1)

Symmetry ◽  
2020 ◽  
Vol 12 (12) ◽  
pp. 1975
Author(s):  
Alfons Van Daele ◽  
Shuanhong Wang

Let (A,Δ) be a weak multiplier Hopf algebra. It is a pair of a non-degenerate algebra A, with or without identity, and a coproduct Δ:A⟶M(A⊗A), satisfying certain properties. In this paper, we continue the study of these objects and construct new examples. A symmetric pair of the source and target maps εs and εt are studied, and their symmetric pair of images, the source algebra and the target algebra εs(A) and εt(A), are also investigated. We show that the canonical idempotent E (which is eventually Δ(1)) belongs to the multiplier algebra M(B⊗C), where (B=εs(A), C=εt(A)) is the symmetric pair of source algebra and target algebra, and also that E is a separability idempotent (as studied). If the weak multiplier Hopf algebra is regular, then also E is a regular separability idempotent. We also see how, for any weak multiplier Hopf algebra (A,Δ), it is possible to make C⊗B (with B and C as above) into a new weak multiplier Hopf algebra. In a sense, it forgets the ’Hopf algebra part’ of the original weak multiplier Hopf algebra and only remembers symmetric pair of the source and target algebras. It is in turn generalized to the case of any symmetric pair of non-degenerate algebras B and C with a separability idempotent E∈M(B⊗C). We get another example using this theory associated to any discrete quantum group. Finally, we also consider the well-known ’quantization’ of the groupoid that comes from an action of a group on a set. All these constructions provide interesting new examples of weak multiplier Hopf algebras (that are not weak Hopf algebras introduced).


Author(s):  
Shuanhong Wang ◽  
Alfons Van Daele

Let $(A,\Delta)$ be a {\it weak multiplier Hopf algebra} as introduced in [VD-W3] (see also [VD-W2]). It is a pair of a non-degenerate algebra $A$, with or without identity, and a coproduct $\Delta$ on $A$, satisfying certain properties. If the algebra has an identity and the coproduct is unital, then we have a Hopf algebra. If the algebra has no identity, but if the coproduct is non-degenerate (which is the equivalent of being unital if the algebra has an identity), then the pair would be a multiplier Hopf algebra. If the algebra has an identity, but the coproduct is not unital, we have a weak Hopf algebra. In the general case, we neither assume $A$ to have an identity nor do we assume $\Delta$ to be non-degenerate and so we work with a {\it genuine} weak multiplier Hopf algebra. It is called {\it regular} if its antipode is a bijective map from $A$ to itself. \snl In this paper, we {\it continue the study of weak multiplier Hopf algebras}. We recall the notions of the source and target maps $\varepsilon_s$ and $\varepsilon_t$, as well as of the source and target algebras. Then we investigate these objects further. Among other things, we show that the canonical idempotent $E$ (which is eventually $\Delta(1)$) belongs to the multiplier algebra $M(B\ot C)$ where $B=\varepsilon_s(A)$ and $C=\varepsilon_t(A)$ and that it is a {\it separability idempotent} (as studied in [VD4.v2]). If the weak multiplier Hopf algebra is regular, then also $E$ is a {\it regular} separability idempotent. \snl We also consider {\it special cases and examples} in this paper. In particular, we see how for any weak multiplier Hopf algebra $(A,\Delta)$, it is possible to make $C\ot B$ (with $B$ and $C$ as above) into a new weak multiplier Hopf algebra. In a sense, it forgets the 'Hopf algebra part' of the original weak multiplier Hopf algebra and only remembers the source and target algebras. It is in turn generalized to the case of any pair of non-degenerate algebras $B$ and $C$ with a separability idempotent $E\in M(B\ot C)$. We get another example using this theory associated to any discrete quantum group (a multiplier Hopf algebra of discrete type with a normalized cointegral). Finally we also consider the well-known 'quantization' of the groupoid that comes from an action of a group on a set. All these constructions provide interesting new examples of weak multiplier Hopf algebras (that are not weak Hopf algebras).


2020 ◽  
Vol 2020 (20) ◽  
pp. 6597-6665
Author(s):  
Raphaël Clouâtre ◽  
Edward J Timko

Abstract We study similarity classes of commuting row contractions annihilated by what we call higher-order vanishing ideals of interpolating sequences. Our main result exhibits a Jordan-type direct sum decomposition for these row contractions. We illustrate how the family of ideals to which our theorem applies is very rich, especially in several variables. We also give two applications of the main result. First, we obtain a purely operator theoretic characterization of interpolating sequences for the multiplier algebra of the Drury–Arveson space. Second, we classify certain classes of cyclic commuting row contractions up to quasi-similarity in terms of their annihilating ideals. This refines some of our recent work on the topic. We show how this classification is sharp: in general quasi-similarity cannot be improved to similarity. The obstruction to doing so is a scarcity of norm-controlled similarities between commuting tuples of nilpotent matrices, and we investigate this question in detail.


2019 ◽  
Vol 475 (2) ◽  
pp. 1448-1471 ◽  
Author(s):  
J. Bueno-Contreras ◽  
G.P. Curbera ◽  
O. Delgado

2018 ◽  
Vol 17 (09) ◽  
pp. 1850169 ◽  
Author(s):  
Hossein Javanshiri ◽  
Mehdi Nemati

Let [Formula: see text] and [Formula: see text] be Banach algebras such that [Formula: see text] is a Banach [Formula: see text]-bimodule with compatible actions. We define the product [Formula: see text], which is a strongly splitting Banach algebra extension of [Formula: see text] by [Formula: see text]. After characterization of the multiplier algebra, topological center, (maximal) ideals and spectrum of [Formula: see text], we restrict our investigation to the study of semisimplicity, regularity, Arens regularity of [Formula: see text] in relation to that of the algebras [Formula: see text], [Formula: see text] and the action of [Formula: see text] on [Formula: see text]. We also compute the first cohomology group [Formula: see text] for all [Formula: see text] as well as the first-order cyclic cohomology group [Formula: see text], where [Formula: see text] is the [Formula: see text]th dual space of [Formula: see text] when [Formula: see text] and [Formula: see text] itself when [Formula: see text]. These results are not only of interest in their own right, but also they pave the way for obtaining some new results for Lau products and module extensions of Banach algebras as well as triangular Banach algebra. Finally, special attention is devoted to the cyclic and [Formula: see text]-weak amenability of [Formula: see text]. In this context, several open questions arise.


2018 ◽  
Vol 370 (12) ◽  
pp. 8467-8482
Author(s):  
Kelly Bickel ◽  
Michael Hartz ◽  
John E. McCarthy

Sign in / Sign up

Export Citation Format

Share Document