Infinitary combinatorics and modal logic

1990 ◽  
Vol 55 (2) ◽  
pp. 761-778 ◽  
Author(s):  
Andreas Blass

AbstractWe show that the modal propositional logic G, originally introduced to describe the modality “it is provable that”, is also sound for various interpretations using filters on ordinal numbers, for example the end-segment filters, the club filters, or the ineffable filters. We also prove that G is complete for the interpretation using end-segment filters. In the case of club filters, we show that G is complete if Jensen's principle □κ holds for all κ < ℵω; on the other hand, it is consistent relative to a Mahlo cardinal that G be incomplete for the club filter interpretation.

2019 ◽  
Vol 29 (4) ◽  
pp. 419-468
Author(s):  
Henning Basold ◽  
Helle Hvid Hansen

Abstract We define notions of well-definedness and observational equivalence for programs of mixed inductive and coinductive types. These notions are defined by means of tests formulas which combine structural congruence for inductive types and modal logic for coinductive types. Tests also correspond to certain evaluation contexts. We define a program to be well-defined if it is strongly normalizing under all tests, and two programs are observationally equivalent if they satisfy the same tests. We show that observational equivalence is sufficiently coarse to ensure that least and greatest fixed point types are initial algebras and final coalgebras, respectively. This yields inductive and coinductive proof principles for reasoning about program behaviour. On the other hand, we argue that observational equivalence does not identify too many terms, by showing that tests induce a topology that, on streams, coincides with usual topology induced by the prefix metric. As one would expect, observational equivalence is, in general, undecidable, but in order to develop some practically useful heuristics we provide coinductive techniques for establishing observational normalization and observational equivalence, along with up-to techniques for enhancing these methods.


Author(s):  
Sergiu Ivanov ◽  
Artiom Alhazov ◽  
Vladimir Rogojin ◽  
Miguel A. Gutiérrez-Naranjo

One of the concepts that lie at the basis of membrane computing is the multiset rewriting rule. On the other hand, the paradigm of rules is profusely used in computer science for representing and dealing with knowledge. Therefore, establishing a “bridge” between these domains is important, for instance, by designing P systems reproducing the modus ponens-based forward and backward chaining that can be used as tools for reasoning in propositional logic. In this paper, the authors show how powerful and intuitive the formalism of membrane computing is and how it can be used to represent concepts and notions from unrelated areas.


2009 ◽  
Vol 2 (4) ◽  
pp. 593-611 ◽  
Author(s):  
FRANCESCA POGGIOLESI

In this paper we present a sequent calculus for the modal propositional logic GL (the logic of provability) obtained by means of the tree-hypersequent method, a method in which the metalinguistic strength of hypersequents is improved, so that we can simulate trees shapes. We prove that this sequent calculus is sound and complete with respect to the Hilbert-style system GL, that it is contraction free and cut free and that its logical and modal rules are invertible. No explicit semantic element is used in the sequent calculus and all the results are proved in a purely syntactic way.


1998 ◽  
Vol 63 (2) ◽  
pp. 479-484 ◽  
Author(s):  
Maarten Marx

We investigate amalgamation properties of relational type algebras. Besides purely algebraic interest, amalgamation in a class of algebras is important because it leads to interpolation results for the logic corresponding to that class (cf. [15]). The multi-modal logic corresponding to relational type algebras became known under the name of “arrow logic” (cf. [18, 17]), and has been studied rather extensively lately (cf. [10]). Our research was inspired by the following result of Andréka et al. [1].Let K be a class of relational type algebras such that(i) composition is associative,(ii) K is a class of boolean algebras with operators, and(iii) K contains the representable relation algebras RRA.Then the equational theory of K is undecidable.On the other hand, there are several classes of relational type algebras (e.g., NA, WA denned below) whose equational (even universal) theories are decidable (cf. [13]). Composition is not associative in these classes. Theorem 5 indicates that also with respect to amalgamation (a very weak form of) associativity forms a borderline. We first recall the relevant definitions.


10.29007/2b5d ◽  
2018 ◽  
Author(s):  
Martina Seidl ◽  
Florian Lonsing ◽  
Armin Biere

We present the tool qbf2epr which translates quantified Boolean formulas (QBF) toformulas in effectively propositional logic (EPR). The decision problem of QBF is theprototypical problem for PSPACE, whereas EPR is NEXPTIME-complete. Thus QBF isembedded in a formalism, which is potentially more succinct. The motivation for this workis twofold. On the one hand, our tool generates challenging benchmarks for EPR solvers.On the other hand, we are interested in how EPR solvers perform compared to QBF solvers and if there are techniques implemented in EPR solvers which would also be valuable in QBF solvers and vice versa.


2001 ◽  
Vol 66 (2) ◽  
pp. 517-535
Author(s):  
Herman Jurjus ◽  
Harrie de Swart

AbstractWe introduce an implication-with-possible-exceptions and define validity of rules-with-possible-exceptions by means of the topological notion of a full subset. Our implication-with-possible-exceptions characterises the preferential consequence relation as axiomatized by Kraus, Lehmann and Magidor [Kraus, Lehmann, and Magidor, 1990]. The resulting inference relation is non-monotonic. On the other hand, modus ponens and the rule of monotony, as well as all other laws of classical propositional logic, are valid-up-to-possible exceptions. As a consequence, the rules of classical propositional logic do not determine the meaning of deducibility and inference as implication-without-exceptions.


1947 ◽  
Vol 12 (2) ◽  
pp. 43-48 ◽  
Author(s):  
W. V. Quine

There are logicians, myself among them, to whom the ideas of modal logic (e. g. Lewis's) are not intuitively clear until explained in non-modal terms. But so long as modal logic stops short of quantification theory, it is possible (as I shall indicate in §2) to provide somewhat the type of explanation desired. When modal logic is extended (as by Miss Barcan1) to include quantification theory, on the other hand, serious obstarles to interpretation are encountered—particularly if one cares to avoid a curiously idealistic ontology which repudiates material objects. Such are the matters which it is the purpose of the present paper to set forth.


2018 ◽  
Vol 83 (3) ◽  
pp. 1063-1090
Author(s):  
YORIYUKI YAMAGATA

AbstractThis article presents a proof that Buss’s $S_2^2$ can prove the consistency of a fragment of Cook and Urquhart’s PV from which induction has been removed but substitution has been retained. This result improves Beckmann’s result, which proves the consistency of such a system without substitution in bounded arithmetic $S_2^1$.Our proof relies on the notion of “computation” of the terms of PV. In our work, we first prove that, in the system under consideration, if an equation is proved and either its left- or right-hand side is computed, then there is a corresponding computation for its right- or left-hand side, respectively. By carefully computing the bound of the size of the computation, the proof of this theorem inside a bounded arithmetic is obtained, from which the consistency of the system is readily proven.This result apparently implies the separation of bounded arithmetic because Buss and Ignjatović stated that it is not possible to prove the consistency of a fragment of PV without induction but with substitution in Buss’s $S_2^1$. However, their proof actually shows that it is not possible to prove the consistency of the system, which is obtained by the addition of propositional logic and other axioms to a system such as ours. On the other hand, the system that we have considered is strictly equational, which is a property on which our proof relies.


2000 ◽  
Vol 65 (2) ◽  
pp. 923-945 ◽  
Author(s):  
Ágnes Kurucz

AbstractIt is shown that the many-dimensional modal logic Kn, determined by products of n-many Kripke frames, is not finitely axiomatisable in the n-modal language, for any n > 2. On the other hand, Kn is determined by a class of frames satisfying a single first-order sentence.


2011 ◽  
Vol 2 (2) ◽  
pp. 56-66 ◽  
Author(s):  
Sergiu Ivanov ◽  
Artiom Alhazov ◽  
Vladimir Rogojin ◽  
Miguel A. Gutiérrez-Naranjo

One of the concepts that lie at the basis of membrane computing is the multiset rewriting rule. On the other hand, the paradigm of rules is profusely used in computer science for representing and dealing with knowledge. Therefore, establishing a “bridge” between these domains is important, for instance, by designing P systems reproducing the modus ponens-based forward and backward chaining that can be used as tools for reasoning in propositional logic. In this paper, the authors show how powerful and intuitive the formalism of membrane computing is and how it can be used to represent concepts and notions from unrelated areas.


Sign in / Sign up

Export Citation Format

Share Document