The problem of interpreting modal logic

1947 ◽  
Vol 12 (2) ◽  
pp. 43-48 ◽  
Author(s):  
W. V. Quine

There are logicians, myself among them, to whom the ideas of modal logic (e. g. Lewis's) are not intuitively clear until explained in non-modal terms. But so long as modal logic stops short of quantification theory, it is possible (as I shall indicate in §2) to provide somewhat the type of explanation desired. When modal logic is extended (as by Miss Barcan1) to include quantification theory, on the other hand, serious obstarles to interpretation are encountered—particularly if one cares to avoid a curiously idealistic ontology which repudiates material objects. Such are the matters which it is the purpose of the present paper to set forth.

2019 ◽  
Vol 29 (4) ◽  
pp. 419-468
Author(s):  
Henning Basold ◽  
Helle Hvid Hansen

Abstract We define notions of well-definedness and observational equivalence for programs of mixed inductive and coinductive types. These notions are defined by means of tests formulas which combine structural congruence for inductive types and modal logic for coinductive types. Tests also correspond to certain evaluation contexts. We define a program to be well-defined if it is strongly normalizing under all tests, and two programs are observationally equivalent if they satisfy the same tests. We show that observational equivalence is sufficiently coarse to ensure that least and greatest fixed point types are initial algebras and final coalgebras, respectively. This yields inductive and coinductive proof principles for reasoning about program behaviour. On the other hand, we argue that observational equivalence does not identify too many terms, by showing that tests induce a topology that, on streams, coincides with usual topology induced by the prefix metric. As one would expect, observational equivalence is, in general, undecidable, but in order to develop some practically useful heuristics we provide coinductive techniques for establishing observational normalization and observational equivalence, along with up-to techniques for enhancing these methods.


1998 ◽  
Vol 63 (2) ◽  
pp. 479-484 ◽  
Author(s):  
Maarten Marx

We investigate amalgamation properties of relational type algebras. Besides purely algebraic interest, amalgamation in a class of algebras is important because it leads to interpolation results for the logic corresponding to that class (cf. [15]). The multi-modal logic corresponding to relational type algebras became known under the name of “arrow logic” (cf. [18, 17]), and has been studied rather extensively lately (cf. [10]). Our research was inspired by the following result of Andréka et al. [1].Let K be a class of relational type algebras such that(i) composition is associative,(ii) K is a class of boolean algebras with operators, and(iii) K contains the representable relation algebras RRA.Then the equational theory of K is undecidable.On the other hand, there are several classes of relational type algebras (e.g., NA, WA denned below) whose equational (even universal) theories are decidable (cf. [13]). Composition is not associative in these classes. Theorem 5 indicates that also with respect to amalgamation (a very weak form of) associativity forms a borderline. We first recall the relevant definitions.


2000 ◽  
Vol 65 (2) ◽  
pp. 923-945 ◽  
Author(s):  
Ágnes Kurucz

AbstractIt is shown that the many-dimensional modal logic Kn, determined by products of n-many Kripke frames, is not finitely axiomatisable in the n-modal language, for any n > 2. On the other hand, Kn is determined by a class of frames satisfying a single first-order sentence.


1950 ◽  
Vol 15 (2) ◽  
pp. 93-102 ◽  
Author(s):  
W. V. Quine

For Gentzen's natural deduction, a formalized method of deduction in quantification theory dating from 1934, these important advantages may be claimed: it corresponds more closely than other methods of formalized quantification theory to habitual unformalized modes of reasoning, and it consequently tends to minimize the false moves involved in seeking to construct proofs. The object of this paper is to present and justify a simplification of Gentzen's method, to the end of enhancing the advantages just claimed. No acquaintance with Gentzen's work will be presupposed.A further advantage of Gentzen's method, also somewhat enhanced in my revision of the method, is relative brevity of proofs. In the more usual systematizations of quantification theory, theorems are derived from axiom schemata by proofs which, if rendered in full, would quickly run to unwieldy lengths. Consequently an abbreviative expedient is usually adopted which consists in preserving and numbering theorems for reference in proofs of subsequent theorems. Further brevity is commonly gained by establishing metatheorems, or derived rules, for reference in proving subsequent theorems. In natural deduction, on the other hand, proofs tend to be so short that the abbreviative expedients just now mentioned may conveniently be dispensed with—at least until theorems of extraordinary complexity are embarked upon. In natural deduction accordingly it is customary to start each argument from scratch, without benefit of accumulated theorems or derived rules.


1990 ◽  
Vol 55 (2) ◽  
pp. 761-778 ◽  
Author(s):  
Andreas Blass

AbstractWe show that the modal propositional logic G, originally introduced to describe the modality “it is provable that”, is also sound for various interpretations using filters on ordinal numbers, for example the end-segment filters, the club filters, or the ineffable filters. We also prove that G is complete for the interpretation using end-segment filters. In the case of club filters, we show that G is complete if Jensen's principle □κ holds for all κ < ℵω; on the other hand, it is consistent relative to a Mahlo cardinal that G be incomplete for the club filter interpretation.


2019 ◽  
Vol 19 (5-6) ◽  
pp. 671-687 ◽  
Author(s):  
JORGE FANDINNO

AbstractIn a recent line of research, two familiar concepts from logic programming semantics (unfounded sets and splitting) were extrapolated to the case of epistemic logic programs. The property of epistemic splitting provides a natural and modular way to understand programs without epistemic cycles but, surprisingly, was only fulfilled by Gelfond’s original semantics (G91), among the many proposals in the literature. On the other hand, G91 may suffer from a kind of self-supported, unfounded derivations when epistemic cycles come into play. Recently, the absence of these derivations was also formalised as a property of epistemic semantics called foundedness. Moreover, a first semantics proved to satisfy foundedness was also proposed, the so-called Founded Autoepistemic Equilibrium Logic (FAEEL). In this paper, we prove that FAEEL also satisfies the epistemic splitting property something that, together with foundedness, was not fulfilled by any other approach up to date. To prove this result, we provide an alternative characterisation of FAEEL as a combination of G91 with a simpler logic we called Founded Epistemic Equilibrium Logic (FEEL), which is somehow an extrapolation of the stable model semantics to the modal logic S5.


2016 ◽  
Vol 15 (1) ◽  
pp. 71-84
Author(s):  
Domingos Faria

Abstract My aim in this paper is to critically assess Plantinga’s modal ontological argument for existence of God, such as it is presented in the book “The Nature of Necessity” (1974). Plantinga tries to show that this argument is (i) valid and (ii) it is rational to believe in his main premise, namely “there is a possible world in which maximal greatness is instantiated”. On the one hand, I want to show that this argument is logically valid in both systems B and S5 of modal logic. On the other hand, I think that this argument is not a good argument to show that God exists or that it is rational to believe in God.


1953 ◽  
Vol 18 (2) ◽  
pp. 109-113 ◽  
Author(s):  
J. C. C. McKinsey

Halldén, in [1], has recently pointed out that it is highly undesirable, in a system of sentential calculus, for there to exist two formulas α and β such that: (i) α and β contain no variable in common; (ii) neither α nor β is provable; (iii) α ∨ β is provable. We shall call a system unreasonable (in the sense of Halldén) if there exists a pair of formulas α and β having properties (i), (ii), and (iii). Halldén shows (in [1]) that the Lewis systems S1 and S3 are unreasonable in this sense; and that the same is true of any system which is between S1 and S3, as well as of every system which is stronger than S3 but weaker than both S4 and S7. In the present note we shall show that this defect does not occur in S4, nor in S5, nor in any “quasi-normal” extension of S5; we give an example, on the other hand, of an unreasonable system which lies between S4 and S5.When we speak, in what follows, of a system of modal logic, we shall mean a system having the same class of well-formed formulas as have the various Lewis calculi. Thus the well-formed formulas of a system of modal logic, when written in unabbreviated form, are just those formulas which can be built up from sentential variables by use of the binary connective ‘·’ (conjunction sign), and the two unary connectives ‘˜’ (negation sign) and ‘◇’ (possibility sign). We shall, however, also make use of some of the defined signs of Lewis.


1999 ◽  
Vol 173 ◽  
pp. 249-254
Author(s):  
A.M. Silva ◽  
R.D. Miró

AbstractWe have developed a model for theH2OandOHevolution in a comet outburst, assuming that together with the gas, a distribution of icy grains is ejected. With an initial mass of icy grains of 108kg released, theH2OandOHproductions are increased up to a factor two, and the growth curves change drastically in the first two days. The model is applied to eruptions detected in theOHradio monitorings and fits well with the slow variations in the flux. On the other hand, several events of short duration appear, consisting of a sudden rise ofOHflux, followed by a sudden decay on the second day. These apparent short bursts are frequently found as precursors of a more durable eruption. We suggest that both of them are part of a unique eruption, and that the sudden decay is due to collisions that de-excite theOHmaser, when it reaches the Cometopause region located at 1.35 × 105kmfrom the nucleus.


Author(s):  
A. V. Crewe

We have become accustomed to differentiating between the scanning microscope and the conventional transmission microscope according to the resolving power which the two instruments offer. The conventional microscope is capable of a point resolution of a few angstroms and line resolutions of periodic objects of about 1Å. On the other hand, the scanning microscope, in its normal form, is not ordinarily capable of a point resolution better than 100Å. Upon examining reasons for the 100Å limitation, it becomes clear that this is based more on tradition than reason, and in particular, it is a condition imposed upon the microscope by adherence to thermal sources of electrons.


Sign in / Sign up

Export Citation Format

Share Document