Amalgamation in relation algebras

1998 ◽  
Vol 63 (2) ◽  
pp. 479-484 ◽  
Author(s):  
Maarten Marx

We investigate amalgamation properties of relational type algebras. Besides purely algebraic interest, amalgamation in a class of algebras is important because it leads to interpolation results for the logic corresponding to that class (cf. [15]). The multi-modal logic corresponding to relational type algebras became known under the name of “arrow logic” (cf. [18, 17]), and has been studied rather extensively lately (cf. [10]). Our research was inspired by the following result of Andréka et al. [1].Let K be a class of relational type algebras such that(i) composition is associative,(ii) K is a class of boolean algebras with operators, and(iii) K contains the representable relation algebras RRA.Then the equational theory of K is undecidable.On the other hand, there are several classes of relational type algebras (e.g., NA, WA denned below) whose equational (even universal) theories are decidable (cf. [13]). Composition is not associative in these classes. Theorem 5 indicates that also with respect to amalgamation (a very weak form of) associativity forms a borderline. We first recall the relevant definitions.

2019 ◽  
Vol 29 (4) ◽  
pp. 419-468
Author(s):  
Henning Basold ◽  
Helle Hvid Hansen

Abstract We define notions of well-definedness and observational equivalence for programs of mixed inductive and coinductive types. These notions are defined by means of tests formulas which combine structural congruence for inductive types and modal logic for coinductive types. Tests also correspond to certain evaluation contexts. We define a program to be well-defined if it is strongly normalizing under all tests, and two programs are observationally equivalent if they satisfy the same tests. We show that observational equivalence is sufficiently coarse to ensure that least and greatest fixed point types are initial algebras and final coalgebras, respectively. This yields inductive and coinductive proof principles for reasoning about program behaviour. On the other hand, we argue that observational equivalence does not identify too many terms, by showing that tests induce a topology that, on streams, coincides with usual topology induced by the prefix metric. As one would expect, observational equivalence is, in general, undecidable, but in order to develop some practically useful heuristics we provide coinductive techniques for establishing observational normalization and observational equivalence, along with up-to techniques for enhancing these methods.


1992 ◽  
Vol 57 (3) ◽  
pp. 832-843 ◽  
Author(s):  
Balázs Biró

This paper deals with relation, cylindric and polyadic equality algebras. First of all it addresses a problem of B. Jónsson. He asked whether relation set algebras can be expanded by finitely many new operations in a “reasonable” way so that the class of these expansions would possess a finite equational base. The present paper gives a negative answer to this problem: Our main theorem states that whenever Rs+ is a class that consists of expansions of relation set algebras such that each operation of Rs+ is logical in Jónsson's sense, i.e., is the algebraic counterpart of some (derived) connective of first-order logic, then the equational theory of Rs+ has no finite axiom systems. Similar results are stated for the other classes mentioned above. As a corollary to this theorem we can solve a problem of Tarski and Givant [87], Namely, we claim that the valid formulas of certain languages cannot be axiomatized by a finite set of logical axiom schemes. At the same time we give a negative solution for a version of a problem of Henkin and Monk [74] (cf. also Monk [70] and Németi [89]).Throughout we use the terminology, notation and results of Henkin, Monk, Tarski [71] and [85]. We also use results of Maddux [89a].Notation. RA denotes the class of relation algebras, Rs denotes the class of relation set algebras and RRA is the class of representable relation algebras, i.e. the class of subdirect products of relation set algebras. The symbols RA, Rs and RRA abbreviate also the expressions relation algebra, relation set algebra and representable relation algebra, respectively.For any class C of similar algebras EqC is the set of identities that hold in C, while Eq1C is the set of those identities in EqC that contain at most one variable symbol. (We note that Henkin et al. [85] uses the symbol EqC in another sense.)


Filomat ◽  
2016 ◽  
Vol 30 (13) ◽  
pp. 3389-3395
Author(s):  
Milos Kurilic ◽  
Boris Sobot

The games G2 and G3 are played on a complete Boolean algebra B in ?-many moves. At the beginning White picks a non-zero element p of B and, in the n-th move, White picks a positive pn < p and Black chooses an in ? {0,1}. White wins G2 iff lim inf pin,n = 0 and wins G3 iff W A?[?]? ? n?A pin,n = 0. It is shown that White has a winning strategy in the game G2 iff White has a winning strategy in the cut-and-choose game Gc&c introduced by Jech. Also, White has a winning strategy in the game G3 iff forcing by B produces a subset R of the tree <?2 containing either ??0 or ??1, for each ? ? <?2, and having unsupported intersection with each branch of the tree <?2 belonging to V. On the other hand, if forcing by B produces independent (splitting) reals then White has a winning strategy in the game G3 played on B. It is shown that ? implies the existence of an algebra on which these games are undetermined.


1947 ◽  
Vol 12 (2) ◽  
pp. 43-48 ◽  
Author(s):  
W. V. Quine

There are logicians, myself among them, to whom the ideas of modal logic (e. g. Lewis's) are not intuitively clear until explained in non-modal terms. But so long as modal logic stops short of quantification theory, it is possible (as I shall indicate in §2) to provide somewhat the type of explanation desired. When modal logic is extended (as by Miss Barcan1) to include quantification theory, on the other hand, serious obstarles to interpretation are encountered—particularly if one cares to avoid a curiously idealistic ontology which repudiates material objects. Such are the matters which it is the purpose of the present paper to set forth.


2000 ◽  
Vol 65 (2) ◽  
pp. 923-945 ◽  
Author(s):  
Ágnes Kurucz

AbstractIt is shown that the many-dimensional modal logic Kn, determined by products of n-many Kripke frames, is not finitely axiomatisable in the n-modal language, for any n > 2. On the other hand, Kn is determined by a class of frames satisfying a single first-order sentence.


1985 ◽  
Vol 31 (3) ◽  
pp. 377-387 ◽  
Author(s):  
Wieslaw Dziobiak

Let L denote the subvariety lattice of the variety of distributive double p-algebras, that is, the lattice whose universe consists of all varieties of distributive double p-algebras and whose ordering is the inclusion relation. We prove in this paper that each proper filter in L is uncountable. Moreover, we prove that except for the trivial variety (the zero in L) and the variety of Boolean algebras (the unique atom in L) every other element of L, generated by a finite algebra, has infinitely many covers in L, among which at least one is not generated by any finite algebra. The former result strengthens a result of Urquhart who showed that the lattice L is uncountable. On the other hand, both of our results indicate a high complexity of the lattice L at least in comparison with the subvariety lattice of the variety of distributive p-algebras, since a result of Lee shows that the latter lattice forms a chain of type ω + 1 and every cover in it of the variety generated by a finite algebra is itself generated by a finite algebra.


2011 ◽  
Vol 76 (3) ◽  
pp. 870-882
Author(s):  
Robin Hirsch ◽  
Ian Hodkinson ◽  
Roger D. Maddux

AbstractIt is known that for all finite n ≥ 5, there are relation algebras with n-dimensional relational bases but no weak representations. We prove that conversely, there are finite weakly representable relation algebras with no n-dimensional relational bases. In symbols: neither of the classes RAn and wRRA contains the other.


1990 ◽  
Vol 55 (2) ◽  
pp. 761-778 ◽  
Author(s):  
Andreas Blass

AbstractWe show that the modal propositional logic G, originally introduced to describe the modality “it is provable that”, is also sound for various interpretations using filters on ordinal numbers, for example the end-segment filters, the club filters, or the ineffable filters. We also prove that G is complete for the interpretation using end-segment filters. In the case of club filters, we show that G is complete if Jensen's principle □κ holds for all κ < ℵω; on the other hand, it is consistent relative to a Mahlo cardinal that G be incomplete for the club filter interpretation.


2003 ◽  
Vol 68 (2) ◽  
pp. 607-614 ◽  
Author(s):  
Yde Venema

AbstractWe define a nontrivial variety of boolean algebras with operators such that every member of the variety is atomless. This shows that not every variety of boolean algebras with operators is generated by its atomic members, and thus establishes a strong incompleteness result in (multi-)modal logic.


Filomat ◽  
2019 ◽  
Vol 33 (14) ◽  
pp. 4451-4459
Author(s):  
Milos Kurilic ◽  
Aleksandar Pavlovic

For the algebraic convergence ?s, which generates the well known sequential topology ?s on a complete Boolean algebra B, we have ?s = ?ls ? ?li, where the convergences ?ls and ?li are defined by ?ls(x) = {lim sup x}? and ?li(x) = {lim inf x+}? (generalizing the convergence of sequences on the Alexandrov cube and its dual). We consider the minimal topology Olsi extending the (unique) sequential topologies O?s (left) and O?li (right) generated by the convergences ?ls and ?li and establish a general hierarchy between all these topologies and the corresponding a priori and a posteriori convergences. In addition, we observe some special classes of algebras and, in particular, show that in (?,2)-distributive algebras we have limOlsi = lim?s = ?s, while the equality Olsi = ?s holds in all Maharam algebras. On the other hand, in some collapsing algebras we have a maximal (possible) diversity.


Sign in / Sign up

Export Citation Format

Share Document