Quantifying over propositions in relevance logic: nonaxiomatisability of primary interpretations of ∀p and ∃p

1993 ◽  
Vol 58 (1) ◽  
pp. 334-349 ◽  
Author(s):  
Philip Kremer

A typical approach to semantics for relevance (and other) logics: specify a class of algebraic structures and take a model to be one of these structures, α, together with some function or relation which associates with every formula A a subset of α. (This is the approach of, among others, Urquhart, Routley and Meyer and Fine.) In some cases there are restrictions on the class of subsets of α with which a formula can be associated: for example, in the semantics of Routley and Meyer [1973], a formula can only be associated with subsets which are closed upwards. It is natural to take a proposition of α to be such a subset of α, and, further, to take the propositional quantifiers to range over these propositions. (Routley and Meyer [1973] explicitly consider this interpretation.) Given such an algebraic semantics, we call (following Routley and Meyer [1973], who follow Henkin [1950]) the above-described interpretation of the quantifiers the primary interpretation associated with the semantics.

1998 ◽  
Vol 63 (3) ◽  
pp. 831-859 ◽  
Author(s):  
A. Avron

AbstractWe show that the elimination rule for the multiplicative (or intensional) conjunction Λ is admissible in many important multiplicative substructural logics. These include LLm (the multiplicative fragment of Linear Logic) and RMIm (the system obtained from LLm by adding the contraction axiom and its converse, the mingle axiom.) An exception is Rm (the intensional fragment of the relevance logic R, which is LLm together with the contraction axiom). Let SLLm and SRm be, respectively, the systems which are obtained from LLm and Rm by adding this rule as a new rule of inference. The set of theorems of SRm is a proper extension of that of Rm, but a proper subset of the set of theorems of RMIm. Hence it still has the variable-sharing property. SRm has also the interesting property that classical logic has a strong translation into it. We next introduce general algebraic structures, called strong multiplicative structures, and prove strong soundness and completeness of SLLm relative to them. We show that in the framework of these structures, the addition of the weakening axiom to SLLm corresponds to the condition that there will be exactly one designated element, while the addition of the contraction axiom corresponds to the condition that there will be exactly one nondesignated element (in the first case we get the system BCKm, in the second - the system SRm). Various other systems in which multiplicative conjunction functions as a true conjunction are studied, together with their algebraic counterparts.


Author(s):  
Lucas Champollion

Why can I tell you that I ran for five minutes but not that I *ran all the way to the store for five minutes? Why can you say that there are five pounds of books in this package if it contains several books, but not *five pounds of book if it contains only one? What keeps you from using *sixty degrees of water to tell me the temperature of the water in your pool when you can use sixty inches of water to tell me its height? And what goes wrong when I complain that *all the ants in my kitchen are numerous? The constraints on these constructions involve concepts that are generally studied separately: aspect, plural and mass reference, measurement, and distributivity. This work provides a unified perspective on these domains, connects them formally within the framework of algebraic semantics and mereology, and uses this connection to transfer insights across unrelated bodies of literature and formulate a single constraint that explains each of the judgments above. This provides a starting point from which various linguistic applications of mereology are developed and explored. The main foundational issues, relevant data, and choice points are introduced in an accessible format.


1987 ◽  
Vol 10 (4) ◽  
pp. 387-413
Author(s):  
Irène Guessarian

This paper recalls some fixpoint theorems in ordered algebraic structures and surveys some ways in which these theorems are applied in computer science. We describe via examples three main types of applications: in semantics and proof theory, in logic programming and in deductive data bases.


2021 ◽  
Author(s):  
Ivan Chajda ◽  
Helmut Länger

AbstractTogether with J. Paseka we introduced so-called sectionally pseudocomplemented lattices and posets and illuminated their role in algebraic constructions. We believe that—similar to relatively pseudocomplemented lattices—these structures can serve as an algebraic semantics of certain intuitionistic logics. The aim of the present paper is to define congruences and filters in these structures, derive mutual relationships between them and describe basic properties of congruences in strongly sectionally pseudocomplemented posets. For the description of filters in both sectionally pseudocomplemented lattices and posets, we use the tools introduced by A. Ursini, i.e., ideal terms and the closedness with respect to them. It seems to be of some interest that a similar machinery can be applied also for strongly sectionally pseudocomplemented posets in spite of the fact that the corresponding ideal terms are not everywhere defined.


Sign in / Sign up

Export Citation Format

Share Document