Multiplicative conjunction and an algebraic meaning of contraction and weakening

1998 ◽  
Vol 63 (3) ◽  
pp. 831-859 ◽  
Author(s):  
A. Avron

AbstractWe show that the elimination rule for the multiplicative (or intensional) conjunction Λ is admissible in many important multiplicative substructural logics. These include LLm (the multiplicative fragment of Linear Logic) and RMIm (the system obtained from LLm by adding the contraction axiom and its converse, the mingle axiom.) An exception is Rm (the intensional fragment of the relevance logic R, which is LLm together with the contraction axiom). Let SLLm and SRm be, respectively, the systems which are obtained from LLm and Rm by adding this rule as a new rule of inference. The set of theorems of SRm is a proper extension of that of Rm, but a proper subset of the set of theorems of RMIm. Hence it still has the variable-sharing property. SRm has also the interesting property that classical logic has a strong translation into it. We next introduce general algebraic structures, called strong multiplicative structures, and prove strong soundness and completeness of SLLm relative to them. We show that in the framework of these structures, the addition of the weakening axiom to SLLm corresponds to the condition that there will be exactly one designated element, while the addition of the contraction axiom corresponds to the condition that there will be exactly one nondesignated element (in the first case we get the system BCKm, in the second - the system SRm). Various other systems in which multiplicative conjunction functions as a true conjunction are studied, together with their algebraic counterparts.

2021 ◽  
Vol 43 (2) ◽  
pp. 1-55
Author(s):  
Bernardo Toninho ◽  
Nobuko Yoshida

This work exploits the logical foundation of session types to determine what kind of type discipline for the Λ-calculus can exactly capture, and is captured by, Λ-calculus behaviours. Leveraging the proof theoretic content of the soundness and completeness of sequent calculus and natural deduction presentations of linear logic, we develop the first mutually inverse and fully abstract processes-as-functions and functions-as-processes encodings between a polymorphic session π-calculus and a linear formulation of System F. We are then able to derive results of the session calculus from the theory of the Λ-calculus: (1) we obtain a characterisation of inductive and coinductive session types via their algebraic representations in System F; and (2) we extend our results to account for value and process passing, entailing strong normalisation.


Author(s):  
G.M. Bierman

Linear logic was introduced by Jean-Yves Girard in 1987. Like classical logic it satisfies the law of the excluded middle and the principle of double negation, but, unlike classical logic, it has non-degenerate models. Models of logics are often given only at the level of provability, in that they provide denotations of formulas. However, we are also interested in models which provide denotations of deductions, or proofs. Given such a model two proofs are said to be equivalent if their denotations are equal. A model is said to be ‘degenerate’ if there are no formulas for which there exist at least two non-equivalent proofs. It is easy to see that models of classical logic are essentially degenerate because any formula is either true or false and so all proofs of a formula are considered equivalent. The intuitionist approach to this problem involves altering the meaning of the logical connectives but linear logic attacks the very connectives themselves, replacing them with more refined ones. Despite this there are simple translations between classical and linear logic. One can see the need for such a refinement in another way. Both classical and intuitionistic logics could be said to deal with static truths; both validate the rule of modus ponens: if A→B and A, then B; but both also validate the rule if A→B and A, then A∧B. In mathematics this is correct since a proposition, once verified, remains true – it persists. Many situations do not reflect such persistence but rather have an additional notion of causality. An implication A→B should reflect that a state B is accessible from a state A and, moreover, that state A is no longer available once the transition has been made. An example of this phenomenon is in chemistry where an implication A→B represents a reaction of components A to yield B. Thus if two hydrogen and one oxygen atoms bond to form a water molecule, they are consumed in the process and are no longer part of the current state. Linear logic provides logical connectives to describe such refined interpretations.


10.29007/p1fd ◽  
2018 ◽  
Author(s):  
Ozan Kahramanogullari

The deep inference presentation of multiplicative exponential linear logic (MELL) benefits from a rich combinatoric analysis with many more proofs in comparison to its sequent calculus presentation. In the deep inference setting, all the sequent calculus proofs are preserved. Moreover, many other proofs become available, and some of these proofs are much shorter. However, proof search in deep inference is subject to a greater nondeterminism, and this nondeterminism constitutes a bottleneck for applications. To this end, we address the problem of reducing nondeterminism in MELL by refining and extending our technique that has been previously applied to multiplicative linear logic and classical logic. We show that, besides the nondeterminism in commutative contexts, the nondeterminism in exponential contexts can be reduced in a proof theoretically clean manner. The method conserves the exponential speed-up in proof construction due to deep inference, exemplified by Statman tautologies. We validate the improvement in accessing the shorter proofs by experiments with our implementations.


2007 ◽  
Vol 17 (5) ◽  
pp. 957-1027 ◽  
Author(s):  
CARSTEN FÜHRMANN ◽  
DAVID PYM

It is well known that weakening and contraction cause naive categorical models of the classical sequent calculus to collapse to Boolean lattices. In previous work, summarised briefly herein, we have provided a class of models calledclassical categoriesthat is sound and complete and avoids this collapse by interpreting cut reduction by a poset enrichment. Examples of classical categories include boolean lattices and the category of sets and relations, where both conjunction and disjunction are modelled by the set-theoretic product. In this article, which is self-contained, we present an improved axiomatisation of classical categories, together with a deep exploration of their structural theory. Observing that the collapse already happens in the absence of negation, we start with negation-free models calledDummett categories. Examples of these include, besides the classical categories mentioned above, the category of sets and relations, where both conjunction and disjunction are modelled by the disjoint union. We prove that Dummett categories are MIX, and that the partial order can be derived from hom-semilattices, which have a straightforward proof-theoretic definition. Moreover, we show that the Geometry-of-Interaction construction can be extended from multiplicative linear logic to classical logic by applying it to obtain a classical category from a Dummett category.Along the way, we gain detailed insights into the changes that proofs undergo during cut elimination in the presence of weakening and contraction.


2001 ◽  
Vol 66 (2) ◽  
pp. 597-608
Author(s):  
Andreja Prijatelj

AbstractIn this paper, constructions of free ordered algebras on one generator are given that correspond to some one-variable fragments of affine propositional classical logic and their extensions with n-contraction (n ≥ 2). Moreover, embeddings of the already known infinite free structures into the algebras introduced below are furnished with; thus, solving along the respective cardinality problems.


1993 ◽  
Vol 58 (1) ◽  
pp. 334-349 ◽  
Author(s):  
Philip Kremer

A typical approach to semantics for relevance (and other) logics: specify a class of algebraic structures and take a model to be one of these structures, α, together with some function or relation which associates with every formula A a subset of α. (This is the approach of, among others, Urquhart, Routley and Meyer and Fine.) In some cases there are restrictions on the class of subsets of α with which a formula can be associated: for example, in the semantics of Routley and Meyer [1973], a formula can only be associated with subsets which are closed upwards. It is natural to take a proposition of α to be such a subset of α, and, further, to take the propositional quantifiers to range over these propositions. (Routley and Meyer [1973] explicitly consider this interpretation.) Given such an algebraic semantics, we call (following Routley and Meyer [1973], who follow Henkin [1950]) the above-described interpretation of the quantifiers the primary interpretation associated with the semantics.


2006 ◽  
Vol 4 ◽  
Author(s):  
Tony Roy

This document collects natural derivation systems for logics described in Priest, An Introduction to Non-Classical Logic [4]. It provides an alternative or supplement to the semantic tableaux of his text. Except that some chapters are collapsed, there are sections for each chapter in Priest, with an additional, final section on quantified modal logic. In each case, (i) the language is briefly described and key semantic definitions stated, (ii) the derivation system is presented with a few examples given, and (iii) soundness and completeness are proved. There should be enough detail to make the parts accessible to students would work through parallel sections of Priest.


Sign in / Sign up

Export Citation Format

Share Document