Generators for the Algebra of Symmetric Polynomials

1993 ◽  
Vol 100 (4) ◽  
pp. 386 ◽  
Author(s):  
D. G. Mead

2009 ◽  
Vol 44 (5) ◽  
pp. 583-590 ◽  
Author(s):  
Emmanuel Briand ◽  
Mercedes Rosas


2021 ◽  
Vol 8 (2) ◽  
Author(s):  
Jan-Willem M. van Ittersum

AbstractThe algebra of so-called shifted symmetric functions on partitions has the property that for all elements a certain generating series, called the q-bracket, is a quasimodular form. More generally, if a graded algebra A of functions on partitions has the property that the q-bracket of every element is a quasimodular form of the same weight, we call A a quasimodular algebra. We introduce a new quasimodular algebra $$\mathcal {T}$$ T consisting of symmetric polynomials in the part sizes and multiplicities.





1990 ◽  
Vol 87 (4) ◽  
pp. 1441-1445 ◽  
Author(s):  
L. C. Biedenharn ◽  
J. D. Louck


2008 ◽  
Vol 178 (1) ◽  
pp. 280-286 ◽  
Author(s):  
Yuan Li


2018 ◽  
Vol 59 (9) ◽  
pp. 091411 ◽  
Author(s):  
J. Harnad ◽  
Eunghyun Lee


Algebra ◽  
2018 ◽  
pp. 209-220
Author(s):  
John Scherk


1994 ◽  
Vol 101 (7) ◽  
pp. 661 ◽  
Author(s):  
F. Matus


Sign in / Sign up

Export Citation Format

Share Document