Patterns of Specific and Phenological Diversity in the Grass Community of the Venezuelan Tropical Savannas

1983 ◽  
Vol 10 (5) ◽  
pp. 373 ◽  
Author(s):  
Guillermo Sarmiento
1999 ◽  
Vol 67 (2) ◽  
pp. 181-193 ◽  
Author(s):  
Lênio Soares Galvão ◽  
Ícaro Vitorello ◽  
Raimundo Almeida Filho
Keyword(s):  

2021 ◽  
Vol 51 ◽  
Author(s):  
Diogo Neia Eberhardt ◽  
Robélio Leandro Marchão ◽  
Pedro Rodolfo Siqueira Vendrame ◽  
Marc Corbeels ◽  
Osvaldo Guedes Filho ◽  
...  

ABSTRACT Tropical Savannas cover an area of approximately 1.9 billion hectares around the word and are subject to regular fires every 1 to 4 years. This study aimed to evaluate the influence of burning windrow wood from Cerrado (Brazilian Savanna) deforestation on the spatial variability of soil chemical properties, in the field. The data were analysed by using geostatistical methods. The semivariograms for pH(H2O), pH(CaCl2), Ca, Mg and K were calculated according to spherical models, whereas the phosphorus showed a nugget effect. The cross semi-variograms showed correlations between pH(H2O) and pH(CaCl2) with other variables with spatial dependence (exchangeable Ca and Mg and available K). The spatial variability maps for the pH(H2O), pH(CaCl2), Ca, Mg and K concentrations also showed similar patterns of spatial variability, indicating that burning the vegetation after deforestation caused a well-defined spatial arrangement. Even after 20 years of use with agriculture, the spatial distribution of pH(H2O), pH(CaCl2), Ca, Mg and available K was affected by the wood windrow burning that took place during the initial deforestation.


2013 ◽  
Vol 113 (4) ◽  
pp. 319-352 ◽  
Author(s):  
J. C. Z. Woinarski ◽  
S. Legge
Keyword(s):  

2016 ◽  
Vol 13 (17) ◽  
pp. 5085-5102 ◽  
Author(s):  
Caitlin E. Moore ◽  
Tim Brown ◽  
Trevor F. Keenan ◽  
Remko A. Duursma ◽  
Albert I. J. M. van Dijk ◽  
...  

Abstract. Phenology is the study of periodic biological occurrences and can provide important insights into the influence of climatic variability and change on ecosystems. Understanding Australia's vegetation phenology is a challenge due to its diverse range of ecosystems, from savannas and tropical rainforests to temperate eucalypt woodlands, semi-arid scrublands, and alpine grasslands. These ecosystems exhibit marked differences in seasonal patterns of canopy development and plant life-cycle events, much of which deviates from the predictable seasonal phenological pulse of temperate deciduous and boreal biomes. Many Australian ecosystems are subject to irregular events (i.e. drought, flooding, cyclones, and fire) that can alter ecosystem composition, structure, and functioning just as much as seasonal change. We show how satellite remote sensing and ground-based digital repeat photography (i.e. phenocams) can be used to improve understanding of phenology in Australian ecosystems. First, we examine temporal variation in phenology on the continental scale using the enhanced vegetation index (EVI), calculated from MODerate resolution Imaging Spectroradiometer (MODIS) data. Spatial gradients are revealed, ranging from regions with pronounced seasonality in canopy development (i.e. tropical savannas) to regions where seasonal variation is minimal (i.e. tropical rainforests) or high but irregular (i.e. arid ecosystems). Next, we use time series colour information extracted from phenocam imagery to illustrate a range of phenological signals in four contrasting Australian ecosystems. These include greening and senescing events in tropical savannas and temperate eucalypt understorey, as well as strong seasonal dynamics of individual trees in a seemingly static evergreen rainforest. We also demonstrate how phenology links with ecosystem gross primary productivity (from eddy covariance) and discuss why these processes are linked in some ecosystems but not others. We conclude that phenocams have the potential to greatly improve the current understanding of Australian ecosystems. To facilitate the sharing of this information, we have formed the Australian Phenocam Network (http://phenocam.org.au/).


Sign in / Sign up

Export Citation Format

Share Document