spherical models
Recently Published Documents


TOTAL DOCUMENTS

122
(FIVE YEARS 15)

H-INDEX

20
(FIVE YEARS 2)

2021 ◽  
Author(s):  
Demian A. Vera ◽  
Maria V. Waks Serra ◽  
Hector A. Gracia ◽  
Guido R. Baez ◽  
Daniela I. Iriarte ◽  
...  

BMC Cancer ◽  
2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Deepa Sharma ◽  
Laurentius Oscar Osapoetra ◽  
Mateusz Faltyn ◽  
Anoja Giles ◽  
Martin Stanisz ◽  
...  

Abstract Background The study here investigated quantitative ultrasound (QUS) parameters to assess tumour response to ultrasound-stimulated microbubbles (USMB) and hyperthermia (HT) treatment in vivo. Mice bearing prostate cancer xenografts were exposed to various treatment conditions including 1% (v/v) Definity microbubbles stimulated at ultrasound pressures 246 kPa and 570 kPa and HT duration of 0, 10, 40, and 50 min. Ultrasound radiofrequency (RF) data were collected using an ultrasound transducer with a central frequency of 25 MHz. QUS parameters based on form factor models were used as potential biomarkers of cell death in prostate cancer xenografts. Results The average acoustic concentration (AAC) parameter from spherical gaussian and the fluid-filled spherical models were the most efficient imaging biomarker of cell death. Statistical significant increases of AAC were found in the combined treatment groups: 246 kPa + 40 min, 246 kPa + 50 min, and 570 kPa + 50 min, in comparison with control tumours (0 kPa + 0 min). Changes in AAC correlates strongly (r2 = 0.62) with cell death fraction quantified from the histopathological analysis. Conclusion Scattering property estimates from spherical gaussian and fluid-filled spherical models are useful imaging biomarkers for assessing tumour response to treatment. Our observation of changes in AAC from high ultrasound frequencies was consistent with previous findings where parameters related to the backscatter intensity (AAC) increased with cell death.


2021 ◽  
Author(s):  
Zhihu Sun ◽  
Enheng Wang ◽  
Xiangyou Xia ◽  
Xiangwei Chen ◽  
MyongJong Yi

Abstract Soil clay influences a range of processes, including vertical and lateral redistribution of water, runoff, and erosion. Knowledge of the spatial pattern of soil clay content (SCC) in cultivated soil region is important. The objective of this study was to determine the degree of spatial variability of SCC across depths in a cultivated black soil region in northeastern China. Data collected from each of 58 sites on a regular grid of 50 by 50 m were analyzed both statistically and geostatistically to describe the spatial distribution. The SCCs between different segments in soil profiles were significantly different. The 0- to 65-cm soil profile could be clustered into three segments: 0- to 30-cm, 30- to 35-cm, and 35- to 65-cm layers.The standard deviation (SD) and coefficients of variation (CV) for the SCC of the 30- to 35-cm segment were the largest. Experimental semivariograms of SCC were best fitted by spherical models. Nugget-to-sill ratios indicated a strong spatial dependence for SCC at other depths, except the 40- to 45-cm and 60- to 65-cm segments. The 35- to 40-cm layer had the largest spatial dependency compared with the other layers. Cross-validation of the kriging map indicated that prediction of SCC using semivariogram parameters was better than assuming the mean of the observed value for any unsampled location. The mapping displayed heterogeneity of SCC across the experimental site and revealed higher SCC close to the tail of an eroded gully and lower SCC neighbouring eroded gully margins. The fragmentation degree and clay-enriched patch amount increased from the near-surface down to 65-cm of depth, suggesting the higher evenness of SCC in the cultivated layer than that in the tillage pan.


2021 ◽  
Vol 12 ◽  
Author(s):  
Mohamed Tantawi ◽  
Jingya Miao ◽  
Caio Matias ◽  
Christopher T. Skidmore ◽  
Michael R. Sperling ◽  
...  

Objective: Stereoelectroencephalography (SEEG) has seen a recent increase in popularity in North America; however, concerns regarding the spatial sampling capabilities of SEEG remain. We aimed to quantify and compare the spatial sampling of subdural electrode (SDE) and SEEG implants.Methods: Patients with drug-resistant epilepsy who underwent invasive monitoring were included in this retrospective case-control study. Ten SEEG cases were compared with ten matched SDE cases based on clinical presentation and pre-implantation hypothesis. To quantify gray matter sampling, MR and CT images were coregistered and a 2.5mm radius sphere was superimposed over the center of each electrode contact. The estimated recording volume of gray matter was defined as the cortical voxels within these spherical models. Paired t-tests were performed to compare volumes and locations of SDE and SEEG recording. A Ripley's K-function analysis was performed to quantify differences in spatial distributions.Results: The average recording volume of gray matter by each individual contact was similar between the two modalities. SEEG implants sampled an average of 20% more total gray matter, consisted of an average of 17% more electrode contacts, and had 77% more of their contacts covering gray matter within sulci. Insular coverage was only achieved with SEEG. SEEG implants generally consist of discrete areas of dense local coverage scattered across the brain; while SDE implants cover relatively contiguous areas with lower density recording.Significance: Average recording volumes per electrode contact are similar for SEEG and SDE, but SEEG may allow for greater overall volumes of recording as more electrodes can be routinely implanted. The primary difference lies in the location and distribution of gray matter than can be sampled. The selection between SEEG and SDE implantation depends on sampling needs of the invasive implant.


2021 ◽  
Vol 81 (4) ◽  
Author(s):  
Asier Alonso-Bardaji ◽  
David Brizuela

AbstractLoop quantum gravity introduces two characteristic modifications in the classical constraints of general relativity: the holonomy and inverse-triad corrections. In this paper, a systematic construction of anomaly-free effective constraints encoding such corrections is developed for spherically symmetric spacetimes. The starting point of the analysis is a generic Hamiltonian constraint where free functions of the triad and curvature components as well as non-minimal couplings between geometric and matter degrees of freedom are considered. Then, the requirement of anomaly freedom is imposed in order to obtain a modified Hamiltonian that forms a first-class algebra. In this way, we construct a family of consistent deformations of spherical general relativity, which generalizes previous results in the literature. The discussed derivation is implemented for vacuum as well as for two matter models: dust and scalar field. Nonetheless, only the deformed vacuum model admits free functions of the connection components. Therefore, under the present assumptions, we conclude that holonomy corrections are not allowed in the presence of these matter fields.


2021 ◽  
Author(s):  
Swagatam Sen

Abstract A two component model of gravitation potential for spiral galaxies has been proposed which couples a spherically symmetric component with a second component that observes planar radial symmetry on the galactic plane and vanishes outside an annular disk beyond the edge of galaxy's effective radius. It is shown that such a model for potential satisfying Poisson Equation would produce rotation velocity curve towards the edge of the galaxy which is flat over distance from the galactic centre. This relationship, which is experimentally observed in many spiral galaxies, is shown as a consequence of classical understanding of gravity and specific symmetry of the gravitational potential without any extrinsic requirement of dark matter. It is also demonstrated that this potential directly yields a relationship between inner mass of the galaxy and terminal rotation velocity, which has been empirically observed and known as Baryonic Tully-Fisher relations. Furthermore a direct test has been proposed for experimental verification of the proposed theory.


2021 ◽  
Vol 51 ◽  
Author(s):  
Diogo Neia Eberhardt ◽  
Robélio Leandro Marchão ◽  
Pedro Rodolfo Siqueira Vendrame ◽  
Marc Corbeels ◽  
Osvaldo Guedes Filho ◽  
...  

ABSTRACT Tropical Savannas cover an area of approximately 1.9 billion hectares around the word and are subject to regular fires every 1 to 4 years. This study aimed to evaluate the influence of burning windrow wood from Cerrado (Brazilian Savanna) deforestation on the spatial variability of soil chemical properties, in the field. The data were analysed by using geostatistical methods. The semivariograms for pH(H2O), pH(CaCl2), Ca, Mg and K were calculated according to spherical models, whereas the phosphorus showed a nugget effect. The cross semi-variograms showed correlations between pH(H2O) and pH(CaCl2) with other variables with spatial dependence (exchangeable Ca and Mg and available K). The spatial variability maps for the pH(H2O), pH(CaCl2), Ca, Mg and K concentrations also showed similar patterns of spatial variability, indicating that burning the vegetation after deforestation caused a well-defined spatial arrangement. Even after 20 years of use with agriculture, the spatial distribution of pH(H2O), pH(CaCl2), Ca, Mg and available K was affected by the wood windrow burning that took place during the initial deforestation.


2020 ◽  
Vol 497 (3) ◽  
pp. 2651-2669
Author(s):  
M S Kirsanova ◽  
V Ossenkopf-Okada ◽  
L D Anderson ◽  
P A Boley ◽  
J H Bieging ◽  
...  

ABSTRACT The aim of this work is to study structure and gas kinematics in the photodissociation regions (PDRs) around the compact H ii regions S235 A and S235 C. We observe the [C ii], [13C ii], and [O i] line emission, using SOFIA/upGREAT, and complement them by data of HCO+ and CO. We use the [13C ii] line to measure the optical depth of the [C ii] emission, and find that the [C ii] line profiles are influenced by self-absorption, while the [13C ii] line remains unaffected by these effects. Hence, for dense PDRs, [13C ii] emission is a better tracer of gas kinematics. The optical depth of the [C ii] line is up to 10 in S235 A. We find an expanding motion of the [C ii]-emitting layer of the PDRs into the front molecular layer in both regions. Comparison of the gas and dust columns shows that gas components visible neither in the [C ii] nor in low-J CO lines may contribute to the total column across S235 A. We test whether the observed properties of the PDRs match the predictions of spherical models of expanding H ii region + PDR + molecular cloud. Integrated intensities of the [13C ii], [C ii], and [O i] lines are well represented by the model, but the models do not reproduce the double-peaked [C ii] line profiles due to an insufficient column density of C+. The model predicts that the [O i] line could be a more reliable tracer of gas kinematics, but the foreground self-absorbing material does not allow using it in the considered regions.


2020 ◽  
Vol 10 ◽  
Author(s):  
Chukwuebuka Vincent Azuka ◽  
Attanda Mouinou Igué

The spatial distribution of soil properties especially saturated hydraulic conductivity (Ksat), Bulk density (BD), soil organic carbon (SOC), total nitrogen (TN) and available phosphorus (Avail.P) is fundamental to sustainable management of soil resources. About 291 surface soil (0-20 cm) samples were collected across three land use types (maize-sorghum (MS), rice field and fallow shrub-grassland (FSG) in Koupendri, north-west Benin using a grid sampling of 25 m x 25 m supplemented with samplings at 5 m x 5 m. Data obtained were subjected to classical and spatial statistics, Pearson’s correlation and analysis of variance using GENSTAT. The soil properties showed normal and non-normal distribution, variation was high (75-126.7 %) for Ksat, moderate (29-45 %) for SOC, C/N and Avail.P, and low (7-15) for BD and TN across the land use. Land use had significant (P &lt; 0.05) effect on all the soil properties evaluated except C/N. The highest values of Ksat (151.6 cm/d), SOC (1.26 %), BD (1.79 g/cm<sup>3</sup>), TN (0.105 %), Avail.P (4.66 ppm) and C/N (12.14) were obtained under the MS cropland whereas porosity was highest (43.7 %) in the rice field. High significant correlation (P &lt; 0.01) was observed among the soil properties irrespective of land use.  The correlation length (65-300 m) and nugget effect ratio indicates high variation and strong spatially dependent soil properties. However, TN, BD, Avail.P and C/N were weakly spatially dependent. The variograms were fitted with mostly exponential and spherical models. The interpolation map could help in delineating different management zones and for making good agronomic decisions.


Sign in / Sign up

Export Citation Format

Share Document