remote sensing monitoring
Recently Published Documents


TOTAL DOCUMENTS

273
(FIVE YEARS 87)

H-INDEX

15
(FIVE YEARS 3)

2022 ◽  
Vol 14 (2) ◽  
pp. 741
Author(s):  
Zhenhua Wu ◽  
Mingliang Che ◽  
Shutao Zhang ◽  
Linghua Duo ◽  
Shaogang Lei ◽  
...  

To deal with the problem of soil salinization that exists widely in semi-arid grassland, the Shengli Coalfield in Xilinhot City was selected as the study area. Six periods of Landsat remote sensing data in 2002, 2005, 2008, 2011, 2014, and 2017 were used to extract the salinity index (SI) and surface albedo to construct the SI-Albedo feature space. The salinization monitoring index (SMI) was used to calculate and classify the soil salinization grades in the study area. The soil salinization status and its dynamic changes were monitored and analyzed. Combined with the logistic regression model, the roles of human and natural factors in the development of soil salinization were determined. The results were as follows: (1) The SMI index constructed using the SI-Albedo feature space is simple and easy to calculate, which is conducive to remote sensing monitoring of salinized soil. R2 of the SMI and soil salt content in the 2017 data from the study area is 0.7313, which achieves good results in the quantitative analysis and monitoring of soil salinization in the Xilinhot Shengli Coalfield. (2) The study area is a grassland landscape. However, grassland landscapes are decreasing year by year, and town landscapes, mining landscapes, and road landscapes are greatly increased. The areas of soil salinization reversion in the Shengli mining area from 2002–2005, 2005–2008, 2008–2011, 2011–2014, 2014–2017, and 2002–2017 were 65.64 km2, 1.03 km2, 18.44 km2, 0.9 km2, 7.52 km2, and 62.33 km2, respectively. The overall trend of soil salinization in the study area was reversed from 2002 to 2017. (3) The driving factors of salinized land from 2002 to 2008 are as follows: the distance to the nearest town landscape > the distance to the nearest mining landscape > the distance to the nearest road landscape. The driving factors of salinized land from 2008 to 2017 are as follows: the distance to nearest mining landscape > the distance to the nearest water landscape > the distance to nearest town landscape > altitude > aspect. Coal exploitation and town expansion have occupied a large amount of saline land, and petroleum exploitation and abandoned railway test sites have intensified the development of saline land. This study provides a reference for the treatment and protection of soil salinization in semi-arid grassland mining areas.


Sensors ◽  
2021 ◽  
Vol 22 (1) ◽  
pp. 31
Author(s):  
Ziheng Feng ◽  
Li Song ◽  
Jianzhao Duan ◽  
Li He ◽  
Yanyan Zhang ◽  
...  

Powdery mildew severely affects wheat growth and yield; therefore, its effective monitoring is essential for the prevention and control of the disease and global food security. In the present study, a spectroradiometer and thermal infrared cameras were used to obtain hyperspectral signature and thermal infrared images data, and thermal infrared temperature parameters (TP) and texture features (TF) were extracted from the thermal infrared images and RGB images of wheat with powdery mildew, during the wheat flowering and filling periods. Based on the ten vegetation indices from the hyperspectral data (VI), TF and TP were integrated, and partial least square regression, random forest regression (RFR), and support vector machine regression (SVR) algorithms were used to construct a prediction model for a wheat powdery mildew disease index. According to the results, the prediction accuracy of RFR was higher than in other models, under both single data source modeling and multi-source data modeling; among the three data sources, VI was the most suitable for powdery mildew monitoring, followed by TP, and finally TF. The RFR model had stable performance in multi-source data fusion modeling (VI&TP&TF), and had the optimal estimation performance with 0.872 and 0.862 of R2 for calibration and validation, respectively. The application of multi-source data collaborative modeling could improve the accuracy of remote sensing monitoring of wheat powdery mildew, and facilitate the achievement of high-precision remote sensing monitoring of crop disease status.


Author(s):  
Shuai Yuan ◽  
Chengyu Liu ◽  
Xueqin Liu ◽  
Yuan Chen ◽  
Yujin Zhang

2021 ◽  
Vol 13 (15) ◽  
pp. 2949
Author(s):  
Tianyi Cai ◽  
Xinhuan Zhang ◽  
Fuqiang Xia ◽  
Zhiping Zhang ◽  
Jingjing Yin ◽  
...  

The center of gravity of China’s new cropland has shifted from Northeast China to the Xinjiang oasis areas where the ecological environment is relatively fragile. However, we currently face a lack of a comprehensive review of the cropland expansion in oasis areas of Xinjiang, which is importantly associated with the sustainable use of cropland, social stability and oasis ecological security. In this study, the land use remote sensing monitoring data in 1990, 2000, 2010 and 2018 were used to comprehensively analyze the process characteristics, different modes and driving mechanisms of the cropland expansion in Xinjiang, as well as its spatial heterogeneity at the oasis area level. The results revealed that cropland in Xinjiang continued to expand from 5803 thousand hectares in 1990 to 8939 thousand hectares in 2018 and experienced three stages of expansion: steady expansion, rapid expansion, and slow expansion. The center of gravity of cropland showed the characteristic of shifting to the South. Edge expansion and encroachment on grassland were the dominant spatial pattern mode and land use conversion mode of Xinjiang’s cropland expansion, respectively. The expansion of cropland in Xinjiang was affected by multiple factors. Irrigation conditions played a dominant role. Topography indirectly affected cropland expansion by affecting the suitability of agricultural production and development. Population growth and farmers’ income were important driving forces. There was significant spatial heterogeneity in the intensity, mode and driving force of cropland expansion among different oasis areas in Xinjiang. The spatial shift of China’s new cropland has occupied a large amount of water resources and ecological land in Xinjiang and exacerbated the vulnerability of the ecosystem in arid regions. The key to sustainable management of cropland in Xinjiang in the future lies in maintaining an appropriate scale of cropland and promoting the coordinated development of cropland, population, water resources and industry.


Sign in / Sign up

Export Citation Format

Share Document