On the stationary distribution of some extremal Markovian sequences

1990 ◽  
Vol 27 (2) ◽  
pp. 291-302 ◽  
Author(s):  
M. T. Alpuim ◽  
E. Athayde

This paper is concerned with the Markovian sequence Xn = Zn max{Xn–1, Yn},n ≧ 1, where X0 is any random variable, {Zn} and {Yn} are independent sequences of i.i.d. random variables both independent of X0. We consider the problem of characterizing the class of stationary distributions arising in such a model and give criteria for a d.f. to belong to it. We develop further results when the Zn's are random variables concentrated on the interval [0, 1], namely having a beta distribution.


1990 ◽  
Vol 27 (02) ◽  
pp. 291-302 ◽  
Author(s):  
M. T. Alpuim ◽  
E. Athayde

This paper is concerned with the Markovian sequence Xn = Zn max{Xn– 1, Yn },n ≧ 1, where X 0 is any random variable, {Zn } and {Yn } are independent sequences of i.i.d. random variables both independent of X 0. We consider the problem of characterizing the class of stationary distributions arising in such a model and give criteria for a d.f. to belong to it. We develop further results when the Zn 's are random variables concentrated on the interval [0, 1], namely having a beta distribution.



2021 ◽  
pp. 109-124
Author(s):  
Timothy E. Essington

The chapter “Random Variables and Probability” serves as both a review and a reference on probability. The random variable is the core concept in understanding probability, parameter estimation, and model selection. This chapter reviews the basic idea of a random variable and discusses the two main kinds of random variables: discrete random variables and continuous random variables. It covers the distinction between discrete and continuous random variables and outlines the most common probability mass or density functions used in ecology. Advanced sections cover distributions such as the gamma distribution, Student’s t-distribution, the beta distribution, the beta-binomial distribution, and zero-inflated models.



Stats ◽  
2019 ◽  
Vol 2 (3) ◽  
pp. 371-387
Author(s):  
Peter Zörnig

The popular concept of slash distribution is generalized by considering the quotient Z = X/Y of independent random variables X and Y, where X is any continuous random variable and Y has a general beta distribution. The density of Z can usually be expressed by means of generalized hypergeometric functions. We study the distribution of Z for various parent distributions of X and indicate a possible application in finance.



1988 ◽  
Vol 25 (02) ◽  
pp. 437-443 ◽  
Author(s):  
Bert Fristedt ◽  
Donald A. Berry

Consider a sequence of conditionally independent Bernoulli random variables taking on the values 1 and − 1. The objective is to stop the sequence in order to maximize the discounted sum. Suppose the Bernoulli parameter has a beta distribution with integral parameters. It is optimal to stop when the conditional expectation of the next random variable is negative provided the discount factor is less than or equal to . Moreover, is best possible. The case where the parameters of the beta distribution are arbitrary positive numbers is also treated.



1988 ◽  
Vol 25 (2) ◽  
pp. 437-443 ◽  
Author(s):  
Bert Fristedt ◽  
Donald A. Berry

Consider a sequence of conditionally independent Bernoulli random variables taking on the values 1 and − 1. The objective is to stop the sequence in order to maximize the discounted sum. Suppose the Bernoulli parameter has a beta distribution with integral parameters. It is optimal to stop when the conditional expectation of the next random variable is negative provided the discount factor is less than or equal to . Moreover, is best possible. The case where the parameters of the beta distribution are arbitrary positive numbers is also treated.



1986 ◽  
Vol 23 (04) ◽  
pp. 1013-1018
Author(s):  
B. G. Quinn ◽  
H. L. MacGillivray

Sufficient conditions are presented for the limiting normality of sequences of discrete random variables possessing unimodal distributions. The conditions are applied to obtain normal approximations directly for the hypergeometric distribution and the stationary distribution of a special birth-death process.



Mathematics ◽  
2021 ◽  
Vol 9 (9) ◽  
pp. 981
Author(s):  
Patricia Ortega-Jiménez ◽  
Miguel A. Sordo ◽  
Alfonso Suárez-Llorens

The aim of this paper is twofold. First, we show that the expectation of the absolute value of the difference between two copies, not necessarily independent, of a random variable is a measure of its variability in the sense of Bickel and Lehmann (1979). Moreover, if the two copies are negatively dependent through stochastic ordering, this measure is subadditive. The second purpose of this paper is to provide sufficient conditions for comparing several distances between pairs of random variables (with possibly different distribution functions) in terms of various stochastic orderings. Applications in actuarial and financial risk management are given.



2021 ◽  
Vol 19 (1) ◽  
pp. 284-296
Author(s):  
Hye Kyung Kim

Abstract Many mathematicians have studied degenerate versions of quite a few special polynomials and numbers since Carlitz’s work (Utilitas Math. 15 (1979), 51–88). Recently, Kim et al. studied the degenerate gamma random variables, discrete degenerate random variables and two-variable degenerate Bell polynomials associated with Poisson degenerate central moments, etc. This paper is divided into two parts. In the first part, we introduce a new type of degenerate Bell polynomials associated with degenerate Poisson random variables with parameter α > 0 \alpha \hspace{-0.15em}\gt \hspace{-0.15em}0 , called the fully degenerate Bell polynomials. We derive some combinatorial identities for the fully degenerate Bell polynomials related to the n n th moment of the degenerate Poisson random variable, special numbers and polynomials. In the second part, we consider the fully degenerate Bell polynomials associated with degenerate Poisson random variables with two parameters α > 0 \alpha \gt 0 and β > 0 \beta \hspace{-0.15em}\gt \hspace{-0.15em}0 , called the two-variable fully degenerate Bell polynomials. We show their connection with the degenerate Poisson central moments, special numbers and polynomials.



2021 ◽  
Vol 73 (1) ◽  
pp. 62-67
Author(s):  
Ibrahim A. Ahmad ◽  
A. R. Mugdadi

For a sequence of independent, identically distributed random variable (iid rv's) [Formula: see text] and a sequence of integer-valued random variables [Formula: see text], define the random quantiles as [Formula: see text], where [Formula: see text] denote the largest integer less than or equal to [Formula: see text], and [Formula: see text] the [Formula: see text]th order statistic in a sample [Formula: see text] and [Formula: see text]. In this note, the limiting distribution and its exact order approximation are obtained for [Formula: see text]. The limiting distribution result we obtain extends the work of several including Wretman[Formula: see text]. The exact order of normal approximation generalizes the fixed sample size results of Reiss[Formula: see text]. AMS 2000 subject classification: 60F12; 60F05; 62G30.



2007 ◽  
Vol 21 (3) ◽  
pp. 361-380 ◽  
Author(s):  
Refael Hassin

This article deals with the effect of information and uncertainty on profits in an unobservable single-server queuing system. We consider scenarios in which the service rate, the service quality, or the waiting conditions are random variables that are known to the server but not to the customers. We ask whether the server is motivated to reveal these parameters. We investigate the structure of the profit function and its sensitivity to the variance of the random variable. We consider and compare variations of the model according to whether the server can modify the service price after observing the realization of the random variable.



Sign in / Sign up

Export Citation Format

Share Document