Sea Otters

Author(s):  
Richard Ravalli
Keyword(s):  
2020 ◽  
Vol 137 (3) ◽  
pp. 239-246 ◽  
Author(s):  
KM Shanebeck ◽  
J Lakemeyer ◽  
U Siebert ◽  
K Lehnert
Keyword(s):  

2020 ◽  
Vol 655 ◽  
pp. 123-137
Author(s):  
TM Grimes ◽  
MT Tinker ◽  
BB Hughes ◽  
KE Boyer ◽  
L Needles ◽  
...  

Protective legislation and management have led to an increase in California’s sea otter Enhydra lutris nereis population. While sea otter recovery has been linked to ecosystem benefits, sea otter predation may negatively affect commercially valuable species. Understanding the potential influence of sea otters is of particular importance as their range expands into estuaries that function as nurseries for commercially valuable species like Dungeness crab Metacarcinus magister. We consider how sea otter predation has affected the abundance and size of juvenile Dungeness crab in Elkhorn Slough, California, USA, and analyzed cancrid crab abundance and size across 4 California estuaries with and without sea otters to understand how biotic and abiotic factors contribute to observed variation in crab size and abundance. We compared trends in southern sea otters relative to Dungeness crab landings in California to assess whether increasing sea otter abundance have negatively impacted landings. In Elkhorn Slough, juvenile Dungeness crab abundance and size have declined since 2012, coinciding with sea otter population growth. However, the impact of sea otters on juvenile Dungeness crab size was habitat-specific and only significant in unvegetated habitat. Across estuaries, we found that cancrid crab abundance and size were negatively associated with sea otter presence. While abiotic factors varied among estuaries, these factors explained little of the observed variation in crab abundance or size. Although we found evidence that sea otters can have localized effects on cancrid crab populations within estuaries, we found no evidence that southern sea otters, at recent population sizes, have negatively impacted Dungeness crab landings in California from 2000-2014.


Oryx ◽  
2021 ◽  
pp. 1-6
Author(s):  
Igor Popov ◽  
Alexey Scopin

Abstract We describe the population of the Еndangered sea otter Enhydra lutris on Urup Island, one of the main wildlife refuges in the southern Kuril Islands of Russia. We reviewed historical and local reports of the sea otter, identified its habitat around the island, and surveyed the coastal waters of the island in 2019. Sea otters were numerous on Urup Island in the past but were hunted excessively and almost exterminated by the 1950s. Since then, sea otter populations have increased, and as the island is almost uninhabited we expected otters to be numerous. This was not the case, and we estimated the total population to be 363 ± SE 126 individuals. Our observation of two skinned carcasses on the shore suggests the low numbers are a result of poaching for the illegal fur trade. The case of Urup Island demonstrates that sea otters require active conservation, as even on a remote island they remain threatened. Establishment of protected areas would be an effective conservation measure for this species, although the suppression of demand for sea otter fur is of the greatest importance.


2019 ◽  
Vol 242 (3231) ◽  
pp. 15
Author(s):  
Jake Buehler
Keyword(s):  

2013 ◽  
Vol 94 (2) ◽  
pp. 331-338 ◽  
Author(s):  
Luke P. Tyrrell ◽  
Seth D. Newsome ◽  
Marilyn L. Fogel ◽  
Marissa Viens ◽  
Roxane Bowden ◽  
...  

Ecology ◽  
1980 ◽  
Vol 61 (3) ◽  
pp. 447-453 ◽  
Author(s):  
David O. Duggins

1993 ◽  
Vol 9 (2) ◽  
pp. 156-167 ◽  
Author(s):  
Ronald J. Jameson ◽  
Ancel M. Johnson

2021 ◽  
Vol 9 (1) ◽  
Author(s):  
Joseph M. Eisaguirre ◽  
Perry J. Williams ◽  
Xinyi Lu ◽  
Michelle L. Kissling ◽  
William S. Beatty ◽  
...  

Abstract Background Reintroducing predators is a promising conservation tool to help remedy human-caused ecosystem changes. However, the growth and spread of a reintroduced population is a spatiotemporal process that is driven by a suite of factors, such as habitat change, human activity, and prey availability. Sea otters (Enhydra lutris) are apex predators of nearshore marine ecosystems that had declined nearly to extinction across much of their range by the early 20th century. In Southeast Alaska, which is comprised of a diverse matrix of nearshore habitat and managed areas, reintroduction of 413 individuals in the late 1960s initiated the growth and spread of a population that now exceeds 25,000. Methods Periodic aerial surveys in the region provide a time series of spatially-explicit data to investigate factors influencing this successful and ongoing recovery. We integrated an ecological diffusion model that accounted for spatially-variable motility and density-dependent population growth, as well as multiple population epicenters, into a Bayesian hierarchical framework to help understand the factors influencing the success of this recovery. Results Our results indicated that sea otters exhibited higher residence time as well as greater equilibrium abundance in Glacier Bay, a protected area, and in areas where there is limited or no commercial fishing. Asymptotic spread rates suggested sea otters colonized Southeast Alaska at rates of 1–8 km/yr with lower rates occurring in areas correlated with higher residence time, which primarily included areas near shore and closed to commercial fishing. Further, we found that the intrinsic growth rate of sea otters may be higher than previous estimates suggested. Conclusions This study shows how predator recolonization can occur from multiple population epicenters. Additionally, our results suggest spatial heterogeneity in the physical environment as well as human activity and management can influence recolonization processes, both in terms of movement (or motility) and density dependence.


1933 ◽  
Vol 14 (1) ◽  
pp. 70-71 ◽  
Author(s):  
W. J. Eyerdam
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document