elkhorn slough
Recently Published Documents


TOTAL DOCUMENTS

66
(FIVE YEARS 10)

H-INDEX

16
(FIVE YEARS 2)

2021 ◽  
Vol 87 (8) ◽  
Author(s):  
Oksana Coban ◽  
Olivia Rasigraf ◽  
Anniek E. E. de Jong ◽  
Oliver Spott ◽  
Brad M. Bebout

ABSTRACT Microbial mats, due to stratification of the redox zones, have the potential to include a complete N cycle; however, an attempt to evaluate a complete N cycle in these ecosystems has not been yet made. In this study, the occurrence and rates of major N cycle processes were evaluated in intact microbial mats from Elkhorn Slough, Monterey Bay, CA, USA, and Baja California Sur, Mexico, under oxic and anoxic conditions using 15N-labeling techniques. All the major N transformation pathways, with the exception of anammox, were detected in both microbial mats. Nitrification rates were found to be low at both sites for both seasons investigated. The highest rates of ammonium assimilation were measured in Elkhorn Slough mats in April and corresponded to high in situ ammonium concentrations in the overlying water. Baja mats featured higher ammonification than ammonium assimilation rates, and this, along with their higher affinity for nitrate compared to ammonium and low dissimilatory nitrate reduction to ammonium rates, characterized their differences from Elkhorn Slough mats. Nitrogen fixation rates in Elkhorn Slough microbial mats were found to be low, implying that other processes, such as recycling and assimilation from water, are the main sources of N for these mats at the times sampled. Denitrification in all the mats was incomplete, with nitrous oxide as the end product and not dinitrogen. Our findings highlight N cycling features not previously quantified in microbial mats and indicate a need for further investigations of these microbial ecosystems. IMPORTANCE Nitrogen is essential for life. The nitrogen cycle on Earth is mediated by microbial activity and has had a profound impact on both the atmosphere and the biosphere throughout geologic time. Microbial mats, present in many modern environments, have been regarded as living records of the organisms, genes, and phylogenies of microbes, as they are one of the most ancient ecosystems on Earth. While rates of major nitrogen metabolic pathways have been evaluated in a number of ecosystems, they remain elusive in microbial mats. In particular, it is unclear what factors affect nitrogen cycling in these ecosystems and how morphological differences between mats impact nitrogen transformations. In this study, we investigate nitrogen cycling in two microbial mats having morphological differences. Our findings provide insight for further understanding of biogeochemistry and microbial ecology of microbial mats.


2020 ◽  
Vol 655 ◽  
pp. 123-137
Author(s):  
TM Grimes ◽  
MT Tinker ◽  
BB Hughes ◽  
KE Boyer ◽  
L Needles ◽  
...  

Protective legislation and management have led to an increase in California’s sea otter Enhydra lutris nereis population. While sea otter recovery has been linked to ecosystem benefits, sea otter predation may negatively affect commercially valuable species. Understanding the potential influence of sea otters is of particular importance as their range expands into estuaries that function as nurseries for commercially valuable species like Dungeness crab Metacarcinus magister. We consider how sea otter predation has affected the abundance and size of juvenile Dungeness crab in Elkhorn Slough, California, USA, and analyzed cancrid crab abundance and size across 4 California estuaries with and without sea otters to understand how biotic and abiotic factors contribute to observed variation in crab size and abundance. We compared trends in southern sea otters relative to Dungeness crab landings in California to assess whether increasing sea otter abundance have negatively impacted landings. In Elkhorn Slough, juvenile Dungeness crab abundance and size have declined since 2012, coinciding with sea otter population growth. However, the impact of sea otters on juvenile Dungeness crab size was habitat-specific and only significant in unvegetated habitat. Across estuaries, we found that cancrid crab abundance and size were negatively associated with sea otter presence. While abiotic factors varied among estuaries, these factors explained little of the observed variation in crab abundance or size. Although we found evidence that sea otters can have localized effects on cancrid crab populations within estuaries, we found no evidence that southern sea otters, at recent population sizes, have negatively impacted Dungeness crab landings in California from 2000-2014.


Author(s):  
Thomas L. Turner

AbstractIn Elkhorn Slough, a tidal estuary draining into Monterey Bay, California, the intertidal is occupied by a conspicuous orange sponge known by the name Hymeniacidon sinapium. This same species is found in the rocky intertidal zone of the outer coast of California, and is described herein from subtidal kelp forests of Southern California. Farther afield, morphologically and ecologically indistinguishable sponges are common in estuaries and intertidal areas in Asia, Europe, South America, and Africa. Here I use morphological, ecological, and genetic data to show that these sponges are all members of the same globally-distributed species, which should be known by the senior synonym H. perlevis. Though previous authors have remarked upon the morphological, ecological, and/or genetic similarity of various distant populations, the true scope of this sponge’s distribution appears to be unrecognized or unacknowledged in the literature. Limited larval dispersal, historically documented range expansion, and low genetic variation all support a hypothesis that this sponge has achieved its extraordinary range via human-mediated dispersal, making it the most widely-distributed invasive sponge known to date.DeclarationsConflicts of interest/Competing interests: none to declareAvailability of data and material: All raw data is included as supplementary files; georeferenced collection data is available as a supplementary .xls file; genetic data are archived at Genbank; specimen vouchers are archived at the California Academy of Sciences and at the Natural History Museum of Los Angeles; specimen photos will be made available as supplementary files, are also archived by the associated museums in GBIF, and are posted as georeferenced data on iNaturalist.org.Code availability: n/a


PeerJ ◽  
2019 ◽  
Vol 7 ◽  
pp. e8100 ◽  
Author(s):  
Brent B. Hughes ◽  
Kerstin Wasson ◽  
M. Tim Tinker ◽  
Susan L. Williams ◽  
Lilian P. Carswell ◽  
...  

Recovering species are often limited to much smaller areas than they historically occupied. Conservation planning for the recovering species is often based on this limited range, which may simply be an artifact of where the surviving population persisted. Southern sea otters (Enhydra lutris nereis) were hunted nearly to extinction but recovered from a small remnant population on a remote stretch of the California outer coast, where most of their recovery has occurred. However, studies of recently-recolonized estuaries have revealed that estuaries can provide southern sea otters with high quality habitats featuring shallow waters, high production and ample food, limited predators, and protected haul-out opportunities. Moreover, sea otters can have strong effects on estuarine ecosystems, fostering seagrass resilience through their consumption of invertebrate prey. Using a combination of literature reviews, population modeling, and prey surveys we explored the former estuarine habitats outside the current southern sea otter range to determine if these estuarine habitats can support healthy sea otter populations. We found the majority of studies and conservation efforts have focused on populations in exposed, rocky coastal habitats. Yet historical evidence indicates that sea otters were also formerly ubiquitous in estuaries. Our habitat-specific population growth model for California’s largest estuary—San Francisco Bay—determined that it alone can support about 6,600 sea otters, more than double the 2018 California population. Prey surveys in estuaries currently with (Elkhorn Slough and Morro Bay) and without (San Francisco Bay and Drakes Estero) sea otters indicated that the availability of prey, especially crabs, is sufficient to support healthy sea otter populations. Combining historical evidence with our results, we show that conservation practitioners could consider former estuarine habitats as targets for sea otter and ecosystem restoration. This study reveals the importance of understanding how recovering species interact with all the ecosystems they historically occupied, both for improved conservation of the recovering species and for successful restoration of ecosystem functions and processes.


ZooKeys ◽  
2019 ◽  
Vol 887 ◽  
pp. 1-119
Author(s):  
Erica J. Burton ◽  
Robert N. Lea

Monterey Bay National Marine Sanctuary is a federal, marine protected area located off the central coast of California, USA. Understanding biodiversity, and how it is changing, is necessary to effectively manage the sanctuary. The large size of this sanctuary, which contains a variety of habitats and is influenced by several water masses, provides for a diverse fish fauna. The central California coast has a rich history of ichthyological research and surveys, contributing to a unique repository of information on fish diversity. Herein, we provide a checklist of fishes that occur within the sanctuary, including justification for each species. Ancillary record information including name-bearing type specimens, historic species, cold- or warm-water event species, introduced species, and occurrence at Davidson Seamount or Elkhorn Slough are also provided. This represents the first comprehensive annotated checklist of 507 fishes known to occur within the sanctuary. In addition, 18 species are considered to be extralimital. This annotated checklist of fishes can be used by those interested in zoogeography, marine protected areas, ichthyology, regional natural history, and sanctuary management.


2019 ◽  
Vol 11 (14) ◽  
pp. 1664 ◽  
Author(s):  
Heidi M. Dierssen ◽  
Kelley J. Bostrom ◽  
Adam Chlus ◽  
Kamille Hammerstrom ◽  
David R. Thompson ◽  
...  

Remote sensing imagery has been successfully used to map seagrass in clear waters, but here we evaluate the advantages and limitations of different remote sensing techniques to detect eelgrass in the tidal embayment of Elkhorn Slough, CA. Pseudo true-color imagery from Google Earth and broadband satellite imagery from Sentinel-2 allowed for detection of the various beds, but retrievals particularly in the deeper Vierra bed proved unreliable over time due to variable image quality and environmental conditions. Calibrated water-leaving reflectance spectrum from airborne hyperspectral imagery at 1-m resolution from the Portable Remote Imaging SpectroMeter (PRISM) revealed the extent of both shallow and deep eelgrass beds using the HOPE semi-analytical inversion model. The model was able to reveal subtle differences in spectral shape, even when remote sensing reflectance over the Vierra bed was not visibly distinguishable. Empirical methods exploiting the red edge of reflectance to differentiate submerged vegetation only retrieved the extent of shallow alongshore beds. The HOPE model also accurately retrieved the water column absorption properties, chlorophyll-a, and bathymetry but underestimated the particulate backscattering and suspended matter when benthic reflectance was represented as a horizontal eelgrass leaf. More accurate water column backscattering could be achieved by the use of a darker bottom spectrum representing an eelgrass canopy. These results illustrate how high quality atmospherically-corrected hyperspectral imagery can be used to map eelgrass beds, even in regions prone to sediment resuspension, and to quantify bathymetry and water quality.


2019 ◽  
Vol 4 (2) ◽  
pp. 4031-4032
Author(s):  
◽  
Paulina Andrade ◽  
Lisbeth Arreola ◽  
Melissa Belnas ◽  
Estefania Bland ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document