Cosimulation of Hot Judder Characteristic of a Ventilated Disc Brake System using Finite Element Analysis Technique

Author(s):  
Sung Pil Jung ◽  
Tae Won Park ◽  
Hyun Seok Song
1981 ◽  
Vol 18 (01) ◽  
pp. 51-68
Author(s):  
Donald Liu ◽  
Abram Bakker

Local structural problems in ships are generally the result of stress concentrations in structural details. The intent of this paper is to show that costly repairs and lay-up time of a vessel can often be prevented, if these problem areas are recognized and investigated in the design stages. Such investigations can be performed for minimal labor and computer costs by using finite-element analysis techniques. Practical procedures for analyzing structural details are presented, including discussions of the results and the analysis costs expended. It is shown that the application of the finite-element analysis technique can be economically employed in the investigation of structural details.


Author(s):  
Siva C. Chaduvula ◽  
Mikhail J. Atallah ◽  
Jitesh H. Panchal

Designers need a way to overcome information-related risks, including information leakage and misuse by their own collaborators during collaborative product realization. Existing cryptographic techniques aimed at overcoming these information-related risks are computationally expensive and impractical even for moderate problem sizes, and legal approaches such as nondisclosure agreements are not effective. The computational practicality problem is particularly pronounced for computational techniques, such as the finite element analysis (FEA). In this paper, we propose a technique that enables designers to perform simulations, such as FEA computations, without the need for revealing their information to anyone, including their design collaborators. We present a new approach, the secure finite element analysis approach, which enables designers to perform FEA without having to reveal structural/material information to their counterparts even though the computed answer depends on all the collaborators' confidential information. We build secure finite element analysis (sFEA) using computationally efficient protocols implementing a secure codesign (SCD) framework. One of our findings is that the direct implementation of using SCD framework (termed as naïve sFEA) suffers from lack of scalability. To overcome these limitations, we propose hybrid sFEA that implements performance improvement strategies. We document and discuss the experiments we conducted to determine the computational overhead imposed by both naïve and hybrid sFEA. The results indicate that the computational burden imposed by hybrid sFEA makes it challenging for large-scale FEA—our scheme significantly increases the problem sizes that can be handled when compared to implementations using previous algorithms and protocols, but large enough problem sizes will swamp our scheme as well (in some sense this is unavoidable because of the cubic nature of the FEA time complexity).


Sign in / Sign up

Export Citation Format

Share Document