scholarly journals Elastic-Plastic Finite Element Analysis Technique Coupled with Equivalent Inclusion Method.

1997 ◽  
pp. 85-94
Author(s):  
Eiki Yamaguchi ◽  
Muneo Hori ◽  
Yoshinobu Kubo ◽  
Tsuyoshi Abe
2014 ◽  
Vol 501-504 ◽  
pp. 2515-2519
Author(s):  
Jiong Zhang ◽  
Qi Qing Huang ◽  
Zhan Qu

In this paper, the equivalent inclusion method is used to calculate the elastic fields of a two-dimensional plate containing any number of ellipitical inhomogeneities. Both the interior and the exterior Eshelbys tensors are used in this method. Numerical examples are given to assess the performance of the presented method. The solutions obtained with this method have been checked and confirmed by the finite element analysis results.


1981 ◽  
Vol 18 (01) ◽  
pp. 51-68
Author(s):  
Donald Liu ◽  
Abram Bakker

Local structural problems in ships are generally the result of stress concentrations in structural details. The intent of this paper is to show that costly repairs and lay-up time of a vessel can often be prevented, if these problem areas are recognized and investigated in the design stages. Such investigations can be performed for minimal labor and computer costs by using finite-element analysis techniques. Practical procedures for analyzing structural details are presented, including discussions of the results and the analysis costs expended. It is shown that the application of the finite-element analysis technique can be economically employed in the investigation of structural details.


2001 ◽  
Vol 36 (4) ◽  
pp. 373-390 ◽  
Author(s):  
S. J Hardy ◽  
M. K Pipelzadeh ◽  
A. R Gowhari-Anaraki

This paper discusses the behaviour of hollow tubes with axisymmetric internal projections subjected to combined axial and internal pressure loading. Predictions from an extensive elastic and elastic-plastic finite element analysis are presented for a typical geometry and a range of loading combinations, using a simplified bilinear elastic-perfectly plastic material model. The axial loading case, previously analysed, is extended to cover the additional effect of internal pressure. All the predicted stress and strain data are found to depend on the applied loading conditions. The results are normalized with respect to material properties and can therefore be applied to geometrically similar components made from other materials, which can be represented by the same material models.


2012 ◽  
Vol 468-471 ◽  
pp. 2517-2520 ◽  
Author(s):  
Xin Ying Xie ◽  
Xin Sheng Yin

In this paper ,it analyses the push-extend multi-under-reamed pile in use of elastic-plastic theory by the software ANSYS.It takes four push-extend multi-under-reamed piles which are the same except plates' distance.It introduces the realative theory to make the anlysis much more accuracy.The results which is taken by ANSYS are researched to find out the regularity and can certain the reasonable plate's distance to anlyze the bearing capacity of push-extend multi-under-reamed pile at the same time.


Sign in / Sign up

Export Citation Format

Share Document