Relationship between the hip range of motion and functional motor system movement patterns in football players

Author(s):  
Gabriela SIWECKA ◽  
Ewa WODKA-NATKANIEC ◽  
Łukasz NIEDŹWIEDZKI ◽  
Anna ŚWITOŃ ◽  
Tadeusz NIEDŹWIEDZKI
2011 ◽  
Vol 14 (4) ◽  
pp. 283-286 ◽  
Author(s):  
Carolyn J. Taylor ◽  
Tania Pizzari ◽  
Nick Ames ◽  
John W. Orchard ◽  
Belinda J. Gabbe ◽  
...  

2007 ◽  
Vol 85 (6) ◽  
pp. 217-221 ◽  
Author(s):  
HL Nicholson ◽  
PG Osmotherly ◽  
BA Smith ◽  
CM McGowan

Author(s):  
Gretchen D. Oliver ◽  
Kyle Wasserberger ◽  
Anne de Swart ◽  
Kenzie Friesen ◽  
Jessica Downs ◽  
...  

Context Inadequate hip range of motion (ROM) and isometric strength (ISO) may interfere with energy flow through the kinetic chain and result in increased injury susceptibility. Objective To examine the relationship of hip ROM and ISO with energy flow through the trunk and pitching-arm segments during the windmill softball pitch in youth athletes. A subsequent purpose was to examine the relationship between energy flow and pitch speed. Design Descriptive laboratory study. Setting University research laboratory. Patients or Other Participants A sample of 29 youth softball pitchers (age = 11.2 ± 1.3 years, height = 155.0 ± 10.4 cm, mass = 53.2 ± 12.6 kg). Main Outcome Measure(s) Bilateral hip internal-rotation and external-rotation (ER) ROM and ISO were measured. Net energy outflow and peak rates of energy outflow from the distal ends of the trunk, humerus, and forearm were calculated for the acceleration phase of the windmill softball pitch, and pitch speed was measured. Results Regression analysis revealed an effect of drive-hip ER ISO on the net energy flow out of the distal ends of the trunk (P = .045) and humerus (P = .002). Specifically, increased drive-hip ER ISO was associated with increased net energy outflow from the trunk to the humerus and from the humerus to the forearm. No significant effects of hip ROM or other hip ISO measures were observed. Additionally, pitchers who achieved higher peak rates of distal outflow tended to achieve higher pitch speeds. Conclusions An association was present between drive-hip ER ISO and the net energy flow out of the distal ends of the trunk and humerus during the acceleration phase of the windmill softball pitch, emphasizing the importance of hip and lower body strength in executing the whole-body windmill pitch. Overall, energy-flow analysis is an interesting new way to analyze pitching mechanics and will aid in furthering our understanding of performance and injury risk in windmill softball pitching.


Sign in / Sign up

Export Citation Format

Share Document