scholarly journals A Modified Spectral Methods for Large-Scale UnconStrained

2018 ◽  
Vol 29 (1) ◽  
pp. 127
Author(s):  
Basim A. Hassan ◽  
Haneen A. Alashoor

A modified spectral methods for solving unconstrained optimization problems based on the formulae are derived which are given in [4, 5]. The proposed methods satisfied the descent condition. Moreover, we prove that the new spectral methods are globally convergent. The Numerical results show that the proposed methods effective by comparing with the FR-method.

Algorithms ◽  
2021 ◽  
Vol 14 (8) ◽  
pp. 227
Author(s):  
Zabidin Salleh ◽  
Ghaliah Alhamzi ◽  
Ibitsam Masmali ◽  
Ahmad Alhawarat

The conjugate gradient method is one of the most popular methods to solve large-scale unconstrained optimization problems since it does not require the second derivative, such as Newton’s method or approximations. Moreover, the conjugate gradient method can be applied in many fields such as neural networks, image restoration, etc. Many complicated methods are proposed to solve these optimization functions in two or three terms. In this paper, we propose a simple, easy, efficient, and robust conjugate gradient method. The new method is constructed based on the Liu and Storey method to overcome the convergence problem and descent property. The new modified method satisfies the convergence properties and the sufficient descent condition under some assumptions. The numerical results show that the new method outperforms famous CG methods such as CG-Descent5.3, Liu and Storey, and Dai and Liao. The numerical results include the number of iterations and CPU time.


2014 ◽  
Vol 2014 ◽  
pp. 1-14
Author(s):  
San-Yang Liu ◽  
Yuan-Yuan Huang

This paper investigates a general form of guaranteed descent conjugate gradient methods which satisfies the descent conditiongkTdk≤-1-1/4θkgk2  θk>1/4and which is strongly convergent whenever the weak Wolfe line search is fulfilled. Moreover, we present several specific guaranteed descent conjugate gradient methods and give their numerical results for large-scale unconstrained optimization.


2014 ◽  
Vol 19 (4) ◽  
pp. 469-490 ◽  
Author(s):  
Hamid Esmaeili ◽  
Morteza Kimiaei

In this study, we propose a trust-region-based procedure to solve unconstrained optimization problems that take advantage of the nonmonotone technique to introduce an efficient adaptive radius strategy. In our approach, the adaptive technique leads to decreasing the total number of iterations, while utilizing the structure of nonmonotone formula helps us to handle large-scale problems. The new algorithm preserves the global convergence and has quadratic convergence under suitable conditions. Preliminary numerical experiments on standard test problems indicate the efficiency and robustness of the proposed approach for solving unconstrained optimization problems.


Author(s):  
Sergio G. De-Los-Cobos-Silva ◽  
Roman A. Mora-Gutiérrez ◽  
Eric A. Rincón-García ◽  
Pedro Lara-Velázquez ◽  
Miguel A. Gutiérrez-Andrade ◽  
...  

This work focuses predominantly on unconstrained optimization problems and presents an original algorithm (the code can be downloaded from Ref. 1), which is used for solving a variety of benchmark problems whose dimensions range from 2 to 2.5 millions, using only 3 particles. The algorithm was tested in 36 benchmark continuous unconstrained optimization problems, on a total of 312 instances. The results are presented comparing two fitness criteria: crisp and a fuzzy. The numerical results show that the proposed algorithm is able to reach the global optimum in every benchmark problem.


2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Ahmad Alhawarat ◽  
Thoi Trung Nguyen ◽  
Ramadan Sabra ◽  
Zabidin Salleh

To find a solution of unconstrained optimization problems, we normally use a conjugate gradient (CG) method since it does not cost memory or storage of second derivative like Newton’s method or Broyden–Fletcher–Goldfarb–Shanno (BFGS) method. Recently, a new modification of Polak and Ribiere method was proposed with new restart condition to give a so-call AZPRP method. In this paper, we propose a new modification of AZPRP CG method to solve large-scale unconstrained optimization problems based on a modification of restart condition. The new parameter satisfies the descent property and the global convergence analysis with the strong Wolfe-Powell line search. The numerical results prove that the new CG method is strongly aggressive compared with CG_Descent method. The comparisons are made under a set of more than 140 standard functions from the CUTEst library. The comparison includes number of iterations and CPU time.


Sign in / Sign up

Export Citation Format

Share Document