Prediction-free Online Dispatch of Remote Wind-Storage Plant Considering Transmission Congestion

Author(s):  
Tengyun Qi ◽  
Zhongjie Guo ◽  
Jianping Liu ◽  
Wei Wei ◽  
Fei Xu ◽  
...  
2012 ◽  
Vol 5 (3) ◽  
pp. 65-83 ◽  
Author(s):  
Anders Loland ◽  
Egil Ferkingstad ◽  
Mathilde Wilhelmsen

2017 ◽  
Vol 2017 ◽  
pp. 1-16 ◽  
Author(s):  
Beibei Wang ◽  
Xiaoqing Hu ◽  
Peifeng Shen ◽  
Wenlu Ji ◽  
Yang Cao ◽  
...  

There are many uncertain factors in the modern distribution network, including the access of renewable energy sources and the heavy load level. The existence of these factors has brought challenges to the stability of the power distribution network, as well as increasing the risk of exceeding transmission capacity of distribution lines. The appearance of flexible load control technology provides a new idea to solve the above problems. Air conditioners (ACs) account for a great proportion of all loads. In this paper, the model of dispatching AC loads in the regional power grid is constructed, and the direct load control (DLC) method is adopted to reduce the load of ACs. An improved tabu search technique is proposed to solve the problem of network dispatch in distribution systems in order to reduce the resistive line losses and to eliminate the transmission congestion in lines under normal operating conditions. The optimal node solution is obtained to find the best location and reduction capacity of ACs for load control. To demonstrate the validity and effectiveness of the proposed method, a test system is studied. The numerical results are also given in this article, which reveal that the proposed method is promising.


2012 ◽  
Vol 2012 ◽  
pp. 1-8 ◽  
Author(s):  
K. Vijayakumar

Congestion management is one of the important functions performed by system operator in deregulated electricity market to ensure secure operation of transmission system. This paper proposes two effective methods for transmission congestion alleviation in deregulated power system. Congestion or overload in transmission networks is alleviated by rescheduling of generators and/or load shedding. The two objectives conflicting in nature (1) transmission line over load and (2) congestion cost are optimized in this paper. The multiobjective fuzzy evolutionary programming (FEP) and nondominated sorting genetic algorithm II methods are used to solve this problem. FEP uses the combined advantages of fuzzy and evolutionary programming (EP) techniques and gives better unique solution satisfying both objectives, whereas nondominated sorting genetic algorithm (NSGA) II gives a set of Pareto-optimal solutions. The methods propose an efficient and reliable algorithm for line overload alleviation due to critical line outages in a deregulated power markets. The quality and usefulness of the algorithm is tested on IEEE 30 bus system.


Sign in / Sign up

Export Citation Format

Share Document