evolutionary programming
Recently Published Documents


TOTAL DOCUMENTS

1027
(FIVE YEARS 72)

H-INDEX

55
(FIVE YEARS 3)

Energies ◽  
2021 ◽  
Vol 14 (22) ◽  
pp. 7733
Author(s):  
Mohd Helmi Mansor ◽  
Ismail Musirin ◽  
Muhammad Murtadha Othman

Economic Dispatch (ED) problems have been solved using single-objective optimization for so long, as Grid System Operators (GSOs) previously only focused on minimizing the total production cost. In modern power systems, GSOs require not only optimizing the total production cost but also, at the same time, optimizing other important objectives, such as the total emissions of the greenhouse gasses, total system loss and voltage stability. This requires a suitable multi-objective optimization approach in ensuring the ED solution produced is satisfying all the objectives. This paper presents a new multi-objective optimization technique termed Multi-Objective Immune-Commensal-Evolutionary Programming (MOICEP) for minimizing the total production cost and total system loss via integrated Economic Dispatch and Distributed Generation installation (ED-DG). This involved the application of a weighted-sum multi-objective approach that combined with an optimization technique called Immune-Commensal-Evolutionary Programming (ICEP). The proposed MOICEP has been compared with other multi-objective techniques, which are Multi-Objective-Evolutionary Programming (MOEP) and Multi-Objective-Artificial Immune System (MOAIS). It was found that MOICEP performs very well in producing better optimization results for all the three types of Economic Dispatch (ED) problems compared to MOEP and MOAIS in terms of cheap total production costs and low total system loss.


2021 ◽  
Vol 2107 (1) ◽  
pp. 012049
Author(s):  
Noor Najwa Husnaini Mohammad Husni ◽  
Siti Rafidah Abdul Rahim ◽  
Mohd Rafi Adzman ◽  
Muhammad Hatta Hussain ◽  
Ismail Musirin

Abstract The cost of energy losses analysis for distributed generation (DG) is presented in this paper using a Hybrid Evolutionary Programming-Firefly Algorithm (EPFA). The proposed method was created to determine the optimal DG sizing in the distribution system while accounting for the system’s energy losses. This study presents an investigation into hybrid optimization techniques for DG capabilities and optimal operating strategies in distribution systems. The objectives of this study were to reduce the cost of energy losses while increasing the voltage profile and minimize distribution system losses. In this study, the analysis was done by consider DG type I which is DG-PV. The suggested methodology was tested using the IEEE 69-bus test system, and the simulation was written in the MATLAB programming language. Power system planners can use appropriate location and sizing from the results obtained for utility planning in terms of economic considerations. From the simulation, the result shows the proposed method can identify the suitable sizing of DG while reduce cost of energy losses and total losses in the system.


2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Libin Hong ◽  
Chenjian Liu ◽  
Jiadong Cui ◽  
Fuchang Liu

Evolutionary programming (EP) uses a mutation as a unique operator. Gaussian, Cauchy, Lévy, and double exponential probability distributions and single-point mutation were nominated as mutation operators. Many mutation strategies have been proposed over the last two decades. The most recent EP variant was proposed using a step-size-based self-adaptive mutation operator. In SSEP, the mutation type with its parameters is selected based on the step size, which differs from generation to generation. Several principles for choosing proper parameters have been proposed; however, SSEP still has limitations and does not display outstanding performance on some benchmark functions. In this work, we proposed a novel mutation strategy based on both the “step size” and “survival rate” for EP (SSMSEP). SSMSEP-1 and SSMSEP-2 are two variants of SSMSEP, which use “survival rate” or “step size” separately. Our proposed method can select appropriate mutation operators and update parameters for mutation operators according to diverse landscapes during the evolutionary process. Compared with SSMSEP-1, SSMSEP-2, SSEP, and other EP variants, the SSMSEP demonstrates its robustness and stable performance on most benchmark functions tested.


Author(s):  
Steven Noel ◽  
Vipin Swarup ◽  
Karin Johnsgard

This paper describes an approach for improving cyber resilience through the synthesis of optimal microsegmentation policy for a network. By leveraging microsegmentation security architecture, we can reason about fine-grained policy rules that enforce access for given combinations of source address, destination address, destination port, and protocol. Our approach determines microsegmentation policy rules that limit adversarial movement within a network according to assumed attack scenarios and mission availability needs. For this problem, we formulate a novel optimization objective function that balances cyberattack risks against accessibility to critical network resources. Given the application of a particular set of policy rules as a candidate optimal solution, this objective function estimates the adversary effort for carrying out a particular attack scenario, which it balances against the extent to which the solution restricts access to mission-critical services. We then apply artificial intelligence techniques (evolutionary programming) to learn microsegmentation policy rules that optimize this objective function.


Author(s):  
N. Z. Saharuddin ◽  
I. Zainal Abidin ◽  
H. Mokhlis ◽  
E. F. Shair

<p>Power system-controlled islanding is one of the mitigation techniques taken to prevent blackouts during severe outage. The implementation of controlled islanding will lead to the formation of few islands, that can operate as a stand-alone island. However, some of these islands may not be balanced in terms of generation and load after the islanding execution. Therefore, a good load shedding scheme is required to meet the power balance criterion so that it can operate as a balanced stand-alone island. Thus, this paper developed a load shedding scheme-based metaheuristics technique namely modified discrete evolutionary programming (MDEP) technique to determine the optimal amount of load to be shed in order to produce balanced stand-alone islands. The developed load shedding scheme is evaluated and validated with two other load shedding techniques which are conventional EP and exhaustive search techniques. The IEEE 30-bus and 39-bus test systems were utilized for this purpose. The results proves that the load shedding based MDEP technique produces the optimal amount of loads to be shed with shortest computational time as compared with the conventional EP and exhaustive search techniques.</p>


Author(s):  
Libin Hong ◽  
John R. Woodward ◽  
Ender Özcan ◽  
Fuchang Liu

AbstractGenetic programming (GP) automatically designs programs. Evolutionary programming (EP) is a real-valued global optimisation method. EP uses a probability distribution as a mutation operator, such as Gaussian, Cauchy, or Lévy distribution. This study proposes a hyper-heuristic approach that employs GP to automatically design different mutation operators for EP. At each generation, the EP algorithm can adaptively explore the search space according to historical information. The experimental results demonstrate that the EP with adaptive mutation operators, designed by the proposed hyper-heuristics, exhibits improved performance over other EP versions (both manually and automatically designed). Many researchers in evolutionary computation advocate adaptive search operators (which do adapt over time) over non-adaptive operators (which do not alter over time). The core motive of this study is that we can automatically design adaptive mutation operators that outperform automatically designed non-adaptive mutation operators.


2021 ◽  
Author(s):  
Robert Planas ◽  
Nicholas Oune ◽  
Ramin Bostanabad

2021 ◽  
Author(s):  
Robert Planas ◽  
Nicholas Oune ◽  
Ramin Bostanabad

Sign in / Sign up

Export Citation Format

Share Document