slime mould
Recently Published Documents


TOTAL DOCUMENTS

506
(FIVE YEARS 108)

H-INDEX

33
(FIVE YEARS 3)

2022 ◽  
Vol 13 (4) ◽  
pp. 101659
Author(s):  
Md. Shadman Abid ◽  
Hasan Jamil Apon ◽  
Ashik Ahmed ◽  
Khandaker Adil Morshed

Electronics ◽  
2022 ◽  
Vol 11 (2) ◽  
pp. 209
Author(s):  
Hongxing Gao ◽  
Guoxi Liang ◽  
Huiling Chen

In this study, the authors aimed to study an effective intelligent method for employment stability prediction in order to provide a reasonable reference for postgraduate employment decision and for policy formulation in related departments. First, this paper introduces an enhanced slime mould algorithm (MSMA) with a multi-population strategy. Moreover, this paper proposes a prediction model based on the modified algorithm and the support vector machine (SVM) algorithm called MSMA-SVM. Among them, the multi-population strategy balances the exploitation and exploration ability of the algorithm and improves the solution accuracy of the algorithm. Additionally, the proposed model enhances the ability to optimize the support vector machine for parameter tuning and for identifying compact feature subsets to obtain more appropriate parameters and feature subsets. Then, the proposed modified slime mould algorithm is compared against various other famous algorithms in experiments on the 30 IEEE CEC2017 benchmark functions. The experimental results indicate that the established modified slime mould algorithm has an observably better performance compared to the algorithms on most functions. Meanwhile, a comparison between the optimal support vector machine model and other several machine learning methods on their ability to predict employment stability was conducted, and the results showed that the suggested the optimal support vector machine model has better classification ability and more stable performance. Therefore, it is possible to infer that the optimal support vector machine model is likely to be an effective tool that can be used to predict employment stability.


2022 ◽  
Vol 19 (3) ◽  
pp. 2240-2285
Author(s):  
Shihong Yin ◽  
◽  
Qifang Luo ◽  
Yanlian Du ◽  
Yongquan Zhou ◽  
...  

<abstract> <p>The slime mould algorithm (SMA) is a metaheuristic algorithm recently proposed, which is inspired by the oscillations of slime mould. Similar to other algorithms, SMA also has some disadvantages such as insufficient balance between exploration and exploitation, and easy to fall into local optimum. This paper, an improved SMA based on dominant swarm with adaptive t-distribution mutation (DTSMA) is proposed. In DTSMA, the dominant swarm is used improved the SMA's convergence speed, and the adaptive t-distribution mutation balances is used enhanced the exploration and exploitation ability. In addition, a new exploitation mechanism is hybridized to increase the diversity of populations. The performances of DTSMA are verified on CEC2019 functions and eight engineering design problems. The results show that for the CEC2019 functions, the DTSMA performances are best; for the engineering problems, DTSMA obtains better results than SMA and many algorithms in the literature when the constraints are satisfied. Furthermore, DTSMA is used to solve the inverse kinematics problem for a 7-DOF robot manipulator. The overall results show that DTSMA has a strong optimization ability. Therefore, the DTSMA is a promising metaheuristic optimization for global optimization problems.</p> </abstract>


Author(s):  
Çağrı SUİÇMEZ ◽  
Hamdi KAHRAMAN ◽  
Cemal YILMAZ ◽  
Mehmet Fatih IŞIK ◽  
Enes CENGİZ

Entropy ◽  
2021 ◽  
Vol 23 (12) ◽  
pp. 1700
Author(s):  
Shanying Lin ◽  
Heming Jia ◽  
Laith Abualigah ◽  
Maryam Altalhi

Image segmentation is a fundamental but essential step in image processing because it dramatically influences posterior image analysis. Multilevel thresholding image segmentation is one of the most popular image segmentation techniques, and many researchers have used meta-heuristic optimization algorithms (MAs) to determine the threshold values. However, MAs have some defects; for example, they are prone to stagnate in local optimal and slow convergence speed. This paper proposes an enhanced slime mould algorithm for global optimization and multilevel thresholding image segmentation, namely ESMA. First, the Levy flight method is used to improve the exploration ability of SMA. Second, quasi opposition-based learning is introduced to enhance the exploitation ability and balance the exploration and exploitation. Then, the superiority of the proposed work ESMA is confirmed concerning the 23 benchmark functions. Afterward, the ESMA is applied in multilevel thresholding image segmentation using minimum cross-entropy as the fitness function. We select eight greyscale images as the benchmark images for testing and compare them with the other classical and state-of-the-art algorithms. Meanwhile, the experimental metrics include the average fitness (mean), standard deviation (Std), peak signal to noise ratio (PSNR), structure similarity index (SSIM), feature similarity index (FSIM), and Wilcoxon rank-sum test, which is utilized to evaluate the quality of segmentation. Experimental results demonstrated that ESMA is superior to other algorithms and can provide higher segmentation accuracy.


Author(s):  
Ayman Mutahar AlRassas ◽  
Mohammed A. A. Al-qaness ◽  
Ahmed A. Ewees ◽  
Shaoran Ren ◽  
Renyuan Sun ◽  
...  

AbstractOil production forecasting is an important task to manage petroleum reservoirs operations. In this study, a developed time series forecasting model is proposed for oil production using a new improved version of the adaptive neuro-fuzzy inference system (ANFIS). This model is improved by using an optimization algorithm, the slime mould algorithm (SMA). The SMA is a new algorithm that is applied for solving different optimization tasks. However, its search mechanism suffers from some limitations, for example, trapping at local optima. Thus, we modify the SMA using an intelligence search technique called opposition-based learning (OLB). The developed model, ANFIS-SMAOLB, is evaluated with different real-world oil production data collected from two oilfields in two different countries, Masila oilfield (Yemen) and Tahe oilfield (China). Furthermore, the evaluation of this model is considered with extensive comparisons to several methods, using several evaluation measures. The outcomes assessed the high ability of the developed ANFIS-SMAOLB as an efficient time series forecasting model that showed significant performance.


2021 ◽  
Vol 2021 ◽  
pp. 1-23
Author(s):  
Xiaodan Liang ◽  
Dong Wu ◽  
Yang Liu ◽  
Maowei He ◽  
Liling Sun

In the past few decades, metaheuristic algorithms (MA) have been developed tremendously and have been successfully applied in many fields. In recent years, a large number of new MA have been proposed. Slime mould algorithm (SMA) is a novel swarm-based intelligence optimization algorithm. SMA solves the optimization problem by imitating the foraging and movement behavior of slime mould. It can effectively obtain a promising global optimal solution. However, it still suffers some shortcomings such as the unstable convergence speed, the imprecise search accuracy, and incapability of identifying a local optimal solution when faced with complicated optimization problems. With the purpose of overcoming the shortcomings of SMA, this paper proposed a multistrategy enhanced version of SMA called ESMA. The three enhanced strategies are chaotic initialization strategy (CIS), orthogonal learning strategy (OLS), and boundary reset strategy (BRS). The CIS is used to generate an initial population with diversity in the early stage of ESMA, which can increase the convergence speed of the algorithm and the quality of the final solution. Then, the OLS is used to discover the useful information of the best solutions and offer a potential search direction, which enhances the local search ability and raises the convergence rate. Finally, the BRS is used to correct individual positions, which ensures the population diversity and enhances the overall search capabilities of ESMA. The performance of ESMA was validated on the 30 IEEE CEC2014 functions and three IIR model identification problems, compared with other nine well-regarded and state-of-the-art algorithms. Simulation results and analysis prove that the ESMA has a superior performance. The three strategies involved in ESMA have significantly improved the performance of the basic SMA.


Sign in / Sign up

Export Citation Format

Share Document