On Ground Penetrating Radar Fast Imaging Method Based on Compressed Sensing

Author(s):  
Guangjun Wang ◽  
Xinzhao Qi ◽  
Zhaohui Wang ◽  
Chengxiang Ding
Geophysics ◽  
2019 ◽  
Vol 84 (3) ◽  
pp. H1-H12 ◽  
Author(s):  
Hemin Yuan ◽  
Mahboubeh Montazeri ◽  
Majken C. Looms ◽  
Lars Nielsen

Diffractions caused by, e.g., faults, fractures, and small-scale heterogeneity localized near the surface are often used in ground-penetrating radar (GPR) reflection studies to constrain the subsurface velocity distribution using simple hyperbola fitting. Interference with reflected energy makes the identification of diffractions difficult. We have tailored and applied a diffraction imaging method to improve imaging for surface reflection GPR data. Based on a plane-wave destruction algorithm, the method can separate reflections from diffractions. Thereby, a better identification of diffractions facilitates an improved determination of GPR wave velocities and an optimized migration result. We determined the potential of this approach using synthetic and field data, and, for the field study, we also compare the estimated velocity structure with crosshole GPR results. For the field data example, we find that the velocity structure estimated using the diffraction-based process correlates well with results from crosshole GPR velocity estimation. Such improved velocity estimation may have important implications for using surface reflection GPR to map, e.g., porosity for fully saturated media or soil moisture changes in partially saturated media because these physical properties depend on the dielectric permittivity and thereby also the GPR wave velocity.


2013 ◽  
Vol 477-478 ◽  
pp. 1504-1508
Author(s):  
Wen Tai Lei ◽  
Yu Jia Shi

The article proposes a new imaging method for ground penetrating radar (GPR) nondestructive testing (DET). Traditional GPR range migration (RM) imaging algorithm regards all the data in GPR echo data as equally important. This assumption is always not in consistent with real GPR detection scenario and usually cannot obtain high quality imaging results. To improve the quality of GPR imaging results, a new windowed RM imaging algorithm is presented in this paper. The radar profile is processed by one-dimensional windowed Fourier transform. The central point of window function is determined by maximum intensity technique. By using windowed RM imaging algorithm, the clutter of GPR profile is suppressed and the imaging results quality is improved. The simulation of this algorithm is processed and experimental results validate the feasibility of this algorithm.


2016 ◽  
Vol 28 (1) ◽  
pp. 155-162 ◽  
Author(s):  
Chao Li ◽  
Yaowen Su ◽  
Yizhuo Zhang ◽  
Huimin Yang

Sign in / Sign up

Export Citation Format

Share Document